Radiotracer diffusion of copper and potassium in Cu(In,Ga)Se₂ (CIGS) thin-film solar cells

N. A. Stolwijk, M. Wegner, F. Hergemöller, S. Divinski, G. Wilde Institut für Materialphysik, Universität Münster

H. Wolf, M. Deicher

Experimentalphysik, Universität des Saarlandes, Saarbrücken

R. Würz

Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, **Stuttgart (ZSW)**

- INTC-P-476
- CERN-INTC-2016-043

2015: New World Record for CIGS Solar Cells: 22.6% certified

Improvement due to K used in addition to Na as the standard "doping" element

Solar Cell Structure

Diffusion Exps. in CIGS: Radiotracer Technique

Important for optimizing CIGS processing and solar-cell efficiency

DPG Berlin, 26.03.2012

Diffusion Profiles of ⁶⁵Zn & ^{110m}Ag in CIGS

Zn = **front-layer** element: ZnS buffer / ZnO transparent oxide Ag = **alloying** element: substitute for Cu in (Cu,Ag)(In,Ga)Se₂

Master Plot: Impurity Diffusion in CIGS

Cd = **front-layer** element: standard CdS buffer layer Fe = **substrate** element: steel foil as flexible substrate Na = **beneficial** impurity: improves solar-cell efficiency

Cu diffusion in CIGS

Self-diffusivity on Cu sublattice important for interpretation of impurity diffusion

Lubomirsky et al., JAP 83 (1998) 4678

Cu 1, Cu 2, Cu 3:

- various authors,
- various (electrical) methods

⁶⁴Cu:

- tracer experiment
- bulk single-crystal CIS

No reliable data exist for Cu diffusion in CIGS !

Planned Experiment 1: ⁶⁷Cu/⁶⁴Cu Diffusion in CIGS

Self-diffusivity on Cu sublattice data needed to identify diffusion mechanisms

⁶⁷ Cu:	t _{1/2} = 2.6 d	Ύ = 0.185 MeV	49% abundance
	UC _x target	3.5×10⁸ ions/µC	< 30 min/sample
	ZrO ₂	2.0×10 ⁷	30

Half-life time allows for **double-tracked** experiments:

- **On-site** with ISOLDE/ODC
- Off-site at Münster Laboratory (after implantation at ISOLDE)

⁶⁴ Cu:	t _{1/2} = 12.7 h	Ύ = 1.346 MeV	0.5% abundance
	UC _x target	2.0×10⁸ ions/µC	30 min/sample

- Only **on-site** experiments possible
- ⁶⁴Cu less suitable than ⁶⁷Cu

Beam request: 3 shifts over 2 years

Planned Experiment 2: ⁴³K Diffusion in CIGS

Potassium data needed to optimize solar-cell efficiency

- On-site experiments preferable
- Feasibility demonstrated by exps. on feldspar (July 2016)

Beam request: 3 shifts over 2 years

⁴³K Diffusion in Single-Crystal Alkali Feldspar ⊥ (001) (using ISOLDE/ODC facilities, July 2016)

• F. Hergemöller, M. Wegner et al., Phys. Chem. Minerals, submitted

VF = Volkesfeld (Eifel, Germany), single crystal \perp (001) BM = Benson Mines (USA), randomly oriented grains

On-line Diffusion Chamber (ODC) ... to be used in Off-line modus

Concept & Construction: Saarbrücken Group

Figure 1. A representation of the ODC's set-up and the location of its peripherals.

User Guide: Jaime E. Avilés Acosta

Resumé

- Overall request: 6 shifts over 2 years
- Our offer: support for ODC maintainance by Münster groups

With thanks to:

- Saarbrücken group: Manfred Deicher, Herbert Wolf
- ISOLDE team: Karl Johnston, Juliana Schell

Interstitial-Substitutional Diffusion

(Prominent in **semiconductors** such as Ge, Si, GaAs, etc.)

 A_i = minority species, fast interstitial, responsible for impurity transport A_s = majority species, virtually immobile, determines solubility (C_s^{eq}) V = vacancy, mediates interstitial-substitutional exchange

Interstitial-Substitutional Diffusion

CIGS Layer & Surface Structure

- (a) Side view SEM image of the CIGSe/Mo/soda-lime glass layer structure of a diffusion sample. The CIGS layer thickness is 2.34 mm and the grain size is approximately 2 μm
- (b) AFM measurement of the surface topology of the CIGSe layer ($R_{RMS} \sim 140$ nm).

Solar Cell Record Efficiencies

c-Si = 25.6 %¹⁾ mc-Si = 20.8 %¹⁾ CIGS = 22.6 %²⁾ CdTe = 22.1 %³⁾

M. A. Green et al., Progress in Photovolt. Res. Appl. 23 (19015) 805
 P. Jackson et al., Phys. Status Solidi RRL, 10 (2016) 583
 www.firstsolar.com

Market Share of Thin-Film Technologies Percentage of Total Global PV Production

© Fraunhofer ISE

Contamination of ⁶⁷Cu with ⁶⁷Ga (10-20%)

Master Plot: Impurity Diffusion in CIGS

Cd = **front-layer** element: standard CdS buffer layer Fe = **substrate** element: steel foil as flexible substrate Na = **beneficial** impurity: improves solar-cell efficiency

Anion transference number :
$$t_{-} = \frac{D_{an^{-}}^{eff}}{D_{cat^{+}}^{eff} + D_{an^{-}}^{eff}} = \frac{D_{an^{-}}^{eff}}{D_{\sigma}}$$

Fractional pair component :
$$f_{\text{pair}}^{\text{an}} = \frac{D_{\text{pair}}^{\text{eff}}}{D_{\text{pair}}^{\text{eff}} + D_{\text{an}^-}^{\text{eff}}} = \frac{D_{\text{pair}}^{\text{eff}}}{D_{\text{an}}^{*}}$$

Meaning of Δ_{NE} : $\frac{1}{\Delta_{\text{NE}}} = \frac{1}{2} \left(\frac{1}{f_{\text{pair}}^{\text{cat}}} + \frac{1}{f_{\text{pair}}^{\text{an}}} \right)$

$$\sigma_{-} = t_{-}\sigma$$
$$t_{-} = 0.37$$

$$D_{
m Cu} >> D_{
m Fe}^{
m GB}$$

 $D_{
m Fe}^{
m V} > D_{
m Cu}^{
m V} > D_{
m Fe}^{
m GB}$

$$\boldsymbol{k}_{\rm PFG} = \gamma \boldsymbol{g}^2 \delta(\Delta - \delta/3)$$