

KU LEUVEN

High-Precision Branching Ratio Measurement of the Superallowed Fermi β Emitter ¹⁸Ne

Spokesperson: Alex Laffoley (GANIL)

Collaboration: M. Aouadi², P. Ascher², M. Babo¹, G.C. Ball³, B. Blank²,
G. de France¹, P. Delahaye¹, F. de Oliveira Santos¹, A. de Roubin²,
M.R. Dunlop⁴, R. Dunlop⁴, P. Finlay⁵, P.E. Garrett³, M. Gerbaux², J. Giovinazzo²,
T. Goigoux², S. Grévy², G.F. Grinyer¹, J. Grinyer¹, T. Kurtukian-Nieto²,
A.T. Laffoley¹, C. Magron², B. Mauss¹, T. Roger¹, C.E. Svensson⁴, J.C. Thomas¹

1 – GANIL, France 2 – CENBG, France 3 – University of Guelph, Canada 4 – TRIUMF, Canada 5 – K.U. Leuven, Belgium

Corrected ft Values

A.T. Laffoley

Isospin Symmetry Breaking Correction

Isospin Symmetry Breaking Correction

Isospin Symmetry Breaking Correction

Status of ¹⁸Ne

Status of ¹⁸Ne

- Previous measurement by J.C.
 Hardy *et al.* (1975)
 - 7.66 ± 0.21% (2.7% precision)
- GANIL experiment PhD thesis of H. Bouzomita-Zran (2015)
 - 7.3841 ± 0.0051%
 (0.7% precision)
 - article in preparation

Status of ¹⁸Ne

- Previous measurement by J.C.
 Hardy *et al.* (1975)
 - 7.66 ± 0.21% (2.7% precision)
- GANIL experiment PhD thesis of H. Bouzomita-Zran (2015)
 - 7.3841 ± 0.0051%
 (0.7% precision)
 - article in preparation
- Goal: 0.3% precision

Experimental $\delta_C vs ft$ values

A.T. Laffoley

Experimental $\delta_C vs ft$ values

Experimental $\delta_C vs ft$ values

Detector Set-Up

Need to measure 7.3%
 branch directly via β-γ

Detector Set-Up

Need to measure 7.3%
 branch directly via β-γ

Similar to set-up used for

IS603 (¹⁰C BR, 2015), ready 1701 1+ 0.188 % 659 620 0.0021 % 1081 0. Mylar tape 1042 **0**⁺ 7.29 % 1081 Implanted 1701 1042 ions g.s. - 92.08 % 18F HPGe β+ ¹⁸Ne beam T_{1/2} = 109.73(2) min Q = 1655.9(5) keV15 cm Plastic scintillator Precisely calibrated HPGe Shielding detector from CENBG

Beam-time Request

- ¹⁸F contaminant at ≤1% level (T. Stora) √
 - Plasma cooled transfer line

Needs

- >10^{5 18}Ne/s (primary beam)
 <10^{4 18}F/s (contaminant)
- Limit plastic scintillator to
 20 kHz (variable beam on time/cooling of sample)
- 2 shifts for **beam tuning** and optimisation
- 11 shifts for branching ratio measurement of ¹⁸Ne
- 0.5 shifts for **half-life** measurement of ¹⁸Ne
- 0.5 shifts for half-life measurement of ¹⁹Ne
 14 total shifts

Additional Slides

Fig. 11. (a) Absolute γ -ray efficiency at a distance of 15 cm between the source and the detector entrance window. As explained in the text, the shape of the curve is determined with the γ rays given in Table 2, whereas the absolute height of the curve was determined by means of ⁶⁰Co sources. The curve is not completely smooth, as what is presented is not the single γ -ray efficiencies, but full-energy peak efficiencies determined with the complete decay schemes from the sources. (b) Relative differences (in %) between the experimental data and the simulations with the detector model are presented. The dashed lines give the final precisions adopted.

Taken from B. Blank et al., NIM A 776, 34 (2015)

IS603 : Measurement of the super-allowed branching ratio of ¹⁰C

So 2 differents settings :

- → ¹⁹Ne (quite similar to ¹⁰C but no « real » 1022 keV gamma, only pile-up) to define the shape due to pile-up
- \rightarrow ^{10}C to determine the branching ratio

In order to define correctly the pile-up, we also used two differents shaping time because pileup count rate also depends on the shaping time. Analysis on-going....

Diffusion Measurements

- GEANT4 simulations were performed to estimate the size of diffusion effects (<0.1% with 25% of sample diffusing)
- Half-life measurements give access to diffusion parameters
- ¹⁹Ne (T_{1/2} = 17.22 s) is more sensitive to diffusion on long(er) time scales

Sensitivity to δ_C Correction

