#### Neutron Unbound Single-Particle States in <sup>133</sup>Sn from the Beta Decay of <sup>133</sup>In

# M Madurga

M. Madurga<sup>1</sup>, R.Grzywacz<sup>1,2</sup>, S.V. Paulauskas<sup>1</sup>, T.T. King<sup>1</sup>, A. Algora<sup>3</sup>, A.N. Andreyev<sup>4</sup>, D.W. Bardayan<sup>5</sup>, T. Berry<sup>6</sup>, M.J.G. Borge<sup>7</sup>, N.T. Brewer<sup>2</sup>, J. Cederkall<sup>8</sup>, A. Fijalkowska<sup>9</sup>, A. Gottardo<sup>10</sup>, L. Fraile<sup>11</sup>, H.O.U. Fynbo<sup>12</sup>, K.C. Goetz<sup>1</sup>, L. Harkness-Brennan<sup>13</sup>, A. Illana<sup>14</sup>, S.V. Ilyushkin<sup>15</sup>, D. Joss<sup>13</sup>, D. Judson<sup>13</sup>, K. Kolos<sup>16</sup>, T. Kurtukian-Nieto<sup>17</sup>, A. Korgul<sup>18</sup>, A. Lepallieur<sup>9</sup>, R. Licâ<sup>19,20</sup>, N. Marginean<sup>20</sup>, R. Marginean<sup>20</sup>, C. Mazzocchi<sup>18</sup>, C. Mihai<sup>20</sup>, K. Miernik<sup>18</sup>, A.I. Morales<sup>3</sup>, E. Nacher<sup>3</sup>, A. Negret<sup>20</sup>, C.R. Nita<sup>20</sup>, B. Olaizola<sup>21</sup>, R.D. Page<sup>13</sup>, S. Pascu<sup>20</sup>, W.A. Peters<sup>22</sup>, M. Piersa<sup>18</sup>, Z. Podolyak<sup>6</sup>, M. Ramdhane<sup>23</sup>, B.C. Rasco<sup>2</sup>, K. P. Rykaczewski<sup>2</sup>, J. Snall<sup>8,19</sup>, C. Sotty<sup>20</sup>, D. Stracener<sup>2</sup>, Marek Stryjczyk<sup>14</sup>, S. Taylor<sup>1</sup>, O. Tengblad<sup>7</sup>, P. Van Duppen<sup>14</sup>, D. Walter<sup>9</sup>, N. Warr<sup>24</sup>, H. de Witte<sup>15</sup>, Y. Xiao<sup>1</sup>

#### Neutron single particle states in <sup>133</sup>Sn







- <sup>132</sup>Sn quintessential closed core → pure single particle excited states in <sup>133</sup>Sn
- First observed in beta-decay of <sup>133</sup>In at ISOLDE P. Hoff et al., Phys. Rev. Lett. **77**, 1020 (1996).
- Magic shell closure confirmed in (d,p) at ORNL
  - But that is not the entire beta-decay picture...

#### Beta decay of <sup>133</sup>In: Gamow-Teller transitions

Excitation energies from shell model using <sup>78</sup>Ni core and *jj99apn* interaction



- Can only occur between neutron hole states in the <sup>132</sup>Sn core
- Decay half-life dominated by the  $vg_{7/2} \rightarrow \pi g_{9/2}$  transition
  - No mixing! pure beta-decay matrix element
- The vg<sub>7/2</sub> →πg<sub>9/2</sub> transition determines half-lives of <u>all</u> r-process waiting points of Z<50</li>



# Beta decay of <sup>133</sup>In: forbidden transitions

Excitation energies from shell model using <sup>78</sup>Ni core and *jj99apn* interaction MeV 0 2h<sub>9/2</sub> -1h<sub>9/2</sub> 3p<sub>3/2</sub> 2f<sub>7/2</sub> -2 MeV 14 --4 82 12 --6 351/2 Excitation energy in <sup>133</sup>In 2d<sub>3/2</sub> 1h<sub>11/2</sub> 3s<sub>1/2</sub> 2d<sub>3/2</sub> -8- $2d_{5/2}$ 2d<sub>5/2</sub> 7/2- $1g_{7/2}$ -10 1g<sub>7/2</sub> 7/2 -12-11/2 50 4. -14-.....Sn 2. 1 Qar -16- $1g_{9/2}$ 0 7/2 protons neutrons



- beta-decay transitions with  $\Delta L=1, \Delta \pi=0,1$
- N<82 neutron single hole states
  - single particle structure of the <sup>132</sup>Sn core
- Z>50 proton excited states

## Neutron spectroscopy @ CERN





- ➤ 4 clovers, 4% efficient @ 1MeV
- ➤ 26 x 120 cm IDSND bars

•40% efficiency/bar @ 1MeV

- • $\Omega$  = 14.9% of 4 $\pi$
- •90%  $\beta$ -trigger efficiency

•<u>5% total efficiency @ 1MeV</u>



#### <sup>133</sup>In(9/2<sup>+</sup>) Time-of-Flight spectrum



- Single GT transition dominates:  $vg_{7/2} \rightarrow \pi g_{9/2}$  (<sup>132</sup>Cd example)
- Smaller FF transitions at lower energies

#### Isomer selectivity for orbital identification



- Single particle energies for N=82-84 isotones
- isomer selective identification of:
  - $vd_{3/2}^{-1}f_{7/2}^{+2} \rightarrow 3/2^{+1}$
  - $\circ \ vh_{11/2}^{-1}f_{7/2}^{+2} \to 11/2^+$

○ 
$$VS_{1/2}^{-1}f_{7/2}^{+2} \rightarrow 1/2^{+2}$$

## Summary of requested shifts

UC<sub>x</sub> Target + neutron converter + Hot Ta cavity + RILIS

IDS run (summer 2016): Yields @ IDS and isomeric selectivity demonstrated *T. Goodacre, private communication (2016)* 

Calibration run can be replaced with  $^{49}\mathrm{K}$  using UC\_{\rm X} target

|                             | P <sub>n</sub> (%) | Yield<br>(ion/µC)      | IDSND<br>Eff | Neutron<br>s (1/h)         | Shifts | Target          | Source                                  |
|-----------------------------|--------------------|------------------------|--------------|----------------------------|--------|-----------------|-----------------------------------------|
| <sup>133</sup> ln<br>(9/2+) | 80                 | 800                    | 0.04         | 1.5 10 <sup>5</sup>        | 6      | UC <sub>X</sub> | Hot Ta<br>line and<br>cavity +<br>RILIS |
| <sup>133</sup> In<br>(1/2⁻) | 4.75 <sup>*</sup>  | 100                    | 0.04         | 1.010 <sup>3</sup>         | 6      | UC <sub>X</sub> | Hot Ta<br>line and<br>cavity +<br>RILIS |
| <sup>17</sup> N             | 95.1               | 100                    | 0.04         | <b>1.8</b> 10 <sup>4</sup> | 1      | CaO             | Hot Ta<br>line and<br>cavity            |
| <sup>49</sup> K             | 86                 | 2.7<br>10 <sup>5</sup> | 0.04         | 22 10 <sup>6</sup>         | 1      | UC <sub>X</sub> | Hot Ta<br>line and<br>cavity            |

## Summary





- Goal: Systematic study of unbound singleparticle states in <sup>133</sup>Sn
  - •Direct measurement of the  $vg_{7/2} \rightarrow \pi g_{9/2}$  ß-decay matrix element
  - •Location of the Fermi-level single particle states of the <sup>132</sup>Sn core
- Beam request: 13 shifts (collect ~10<sup>6</sup> n)

•6 x <sup>133</sup>In 9/2+, 6 x <sup>133</sup>In 1/2-, 1 x <sup>17</sup>N/<sup>49</sup>K

# BACK UP SLIDES

#### Beta decay of <sup>131</sup>In



## VANDLE efficiency @ ORNL

W.A. Peters & I. Spassova



## Light output vs Time of Flight: Neutron gate



#### Monte Carlo simulation of LeRIBSS setup S. Ilyushkin

