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Binary black holes come in a few different varieties

396 Chapter 12 Binary black hole initial data
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Figure 12.1 The different phases of compact binary inspiral and coalescence. The gravitational wave amplitude
h(t) is sketched schematically and the analysis technique is identified for each phase.

Here Ii j is the reduced quadrupole moment,
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, (12.7)

the bracket ⟨ ⟩ denotes an average over several orbital periods, and the triple dot denotes
the third time derivative. For a binary at large separation we may treat the stars as point
masses and insert their stellar masses m A and Newtonian trajectories xi (t) into equa-
tion (12.7) to evaluate equations (12.5) and (12.6). For a binary orbit with eccentricity e the
emission of gravitational radiation always leads to a decrease in the eccentricity, ė < 0.3

Put differently, gravitational radiation circularizes elliptical orbits. This result implies
that during the late stages of compact binary inspiral, we may approximate the orbit as
circular.4

Exercise 12.1 Consider a Newtonian binary consisting of two point masses m1 and
m2 at a binary separation r . Write the binary’s Hamiltonian H (r,φ, Pr , Pφ), which
is equal to its conserved energy E , as

E = H = 1
2

P2
r

µ
+ 1

2

P2
φ

µr2
− µM

r
, (12.8)

where M = m1 + m2 is the total mass and µ = m1m2/M is the reduced mass. Define
$orb ≡ φ̇ to be the orbital angular velocity, and J ≡ Pφ to be the orbital angular
momentum.

3 Peters (1964); see also Lightman et al. (1975), Problem 18.7.
4 See also exercise 12.2, which shows that once they become circular, the orbits remain circular as they shrink in radius.
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This is a video simulating the second detection, 

GW151226

M1 = 14.2 M⊙ M2 = 7.5 M⊙
• Simulation: Simulating eXtreme Spacetime project

MFinal = 20.8 M⊙ MGWs = 1 M⊙
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Here are two good resources



Hahn & Lindquist did the first work in 1964

ANNALS OF PHYSICS: f8, 304-331 (1964) 

The Two-Body Problem in Geometrodynamics 

SUSAN G. HAHN 

International Business Machines Corporation, New York, New York 

AND 

RICHARD W. LINDQUIST 

Adelphi University, Garden City, New York 

The problem of two interacting masses is investigated within the framework 
of geometrodynamics. It is assumed that the space-time continuum is free of 
all real sources of mass or charge; particles are identified with multiply con- 
nected regions of empty space. Particular attention is focused on an asymp- 
totically flat space containing a “handle” or “wormhole.” When the two 
“mouths” of the wormhole are well separated, they seem to appear as two cen- 
ters of gravitational attraction of equal mass. To simplify the problem, it is 
assumed that the metric is invariant under rotations about the axis of sym- 
metry, and symmetric with respect to the time t = 0 of maximum separation 
of the two mouths. Analytic initial value data for this case have been ob- 
tained by Misner; these contain two arbitrary parameters, which are uniquely 
determined when the mass of the two mouths and their initial separation have 
been specified. We treat a particular case in which the ratio of mass to initial 
separation is approximately one-half. To determine a unique solution of the 
remaining (dynamic) field equations, the coordinate conditions go- = -& are 
imposed; then the set of second order equations is transformed into a quasi- 
linear first order system and the difference scheme of Friedrichs used to ob- 
tain a numerical solution. Its behavior agrees qualitatively with that of the 
one-body problem, and can be interpreted as a mutual attraction and pinching- 
off of the two mouths of the wormhole. 

I. INTRODUCTION 

Wheeler (1, 2) has used the term “geometrodynamics” to characterize those 
solutions of the field equations for gravitation and electromagnetism’ 

41 = R,v - ?4 g& = 2(F,,FP - Pi gj,.F,sF=B) (l.la) 

FPu;v = 0 (l.lb) 

1 Throughout this paper Greek subscripts and superscripts range from 0 to 3 and Latin 
ones from 1 to 3. Also, units are chosen so that G (universal gravitation constant) = c = 1. 
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This time is to be compared with the time torit at which the throat collapses to 
zero circumference : 

terit W ?rm M 2$. 

We have used here a limiting form for Eq. (2.20), m m 7r2/2p:, which is valid 
for small ~0 . By choosing ~0 sufficiently small, one can evidently make the ratio 
tl/tcrit as small as one pleases. 

This rather surprising result does not contradict the analysis of Fuller and 
Wheeler, for it applies only to the case of strongly interacting masses. There are 
good reasons for regarding the latter system as a single composite particle with an 
internal structure”; violations of causality within this super-particle would not 
be at variance with commonly accepted physical principles. Instead one should 
ask whether one can send a light ray from the asymptotic region through the 
wormhole and back out to infinity without encountering a singularity in the 
metric. We believe this to be impossible, although we have not been able to prove 
it conclusively. 

In summary, the numerical solution of the Einstein field equations presents 
no insurmountable difficulties. Much still remains to be done, however, in the 
investigation both of stable difference schemes (a proof of stability being one of 
the outstanding unsolved problems) and of coordinate conditions that are well 
suited to numerical work. The practical impossibility of carrying the numerical 
solution sufficiently far into the future limits the conclusions which can be drawn 
about the dynamical behavior of the wormhole system. Nevertheless, one sees 
evidence for a gravitational collapse of each mouth, analogous to that of the 
Schwarzschild metric, together with an interaction between the two of them. 
These two effects can only be properly disentangled through measurements in 
the asymptotic region; with the limited data at our disposal, such an analysis 
has not been possible. 
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FIG. 2. Three models for the two-body problems are displayed as two-dimensional sur- 

faces imbedded in flat a-space. The first, (a), a direct generalization of Fig. 1, shows a pair 
of Einstein-Rosen bridges whose upper sheets are joined together. In (b) their lower sheets 
have been joined as well, to form a multiply connected space whose upper and lower sheets 
are equivalent (i.e. isometric). If the two masses represented by the two mouths are equal, 
the figure will also be symmetric under reflections in a vertical plane midway between them. 
These symmetries then allow one to identify corresponding points on the two sheets. and 
also to identify corresponding points at the two mout,hs; the space which results is shown 
in (c). 

model was first proposed by Wheeler (1) and later called by him a “wormhole” 
manifold (2). In order that the two mouths shall match up sufficiently smoothly 
(i.e., analytically), they must be identical; thus this model describes a universe 
containing two particles of equal mass.5 

While there is no compelling reason for preferring one model over another, we 
have focused attention exclusively on the wormhole picture. As far as the purely 

6 The present investigation has been restricted to the case of pure gravitation, for which 
the appropriate field equations are those given in Eq. (l.la) with the right-hand side set 
equal to zero (i.e., with F,, = 0). One can, however, also investigate solutions to the corn 
plete set of equations (1.1) on this manifold. In this more general approach it is also possible 
to trap electric lines of force in the “wormhole,” giving the appearance of two particles with 
equal mass and equal but opposite charge. The time-symmetric initial value problem for this 
case has been solved by Lindquist (13). 



The Maxwell equations serve as a guide

2.2 Maxwell’s equations in Minkowski spacetime 27

We denote the 4-dimensional spacetime metric by gab, the 3-dimensional spatial metric
by γi j , and its conformally related metric by γ̄i j . All of these are objects that we will
encounter in later chapters. Four-dimensional objects associated with gab are denoted with
a superscript (4) in front of the symbol, objects associated with γ̄i j carry a bar, and objects
related to γi j carry no decorations. For example, "i

jk is associated with γi j , "̄i
jk with γ̄i j ,

and (4)"i
jk with gab. The covariant derivative operator is denoted with Di and D̄i when

associated with the spatial metric and the conformally related metric, respectively, but with
the nabla symbol ∇a when associated with the 4-dimensional metric gab. We occasionally
use the symbol #flat for the flat scalar Laplace operator.

We denote the symmetric and antisymmetric parts of a tensor with brackets ( ) and [ ]
around indices in the usual way. For example

T(ab) ≡ 1
2

(Tab + Tba) and T[ab] ≡ 1
2

(Tab − Tba) (2.4)

represent the symmetrized and antisymmetrized tensors constructed from Tab. We write a
flat 4-dimensional spacetime metric as ηab (Minkowski spacetime) and a flat 3-dimensional
spatial metric as ηi j ; these symbols are meant to apply in any coordinate system. Only
when specifically stated will ηab denote the Minkowski metric in Cartesian (inertial)
coordinates with components diag(−1, 1, 1, 1). Finally, we refer to a 4-dimensional line
interval in spacetime as ds2 and a 3-dimensional line interval on a spatial hypersurface
as dl2.

2.2 Maxwell’s equations in Minkowski spacetime

Many of the concepts that we will encounter in this chapter are more transparent in the
simpler framework of electromagnetism in special relativity as described by Maxwell’s
equations. In several places throughout this book we will return to electromagnetism to
illustrate various features of Einstein’s equations.

Maxwell’s equations naturally split into two groups. The first group can be written as

CE ≡ Di Ei − 4πρ = 0 (2.5)

CB ≡ Di Bi = 0, (2.6)

where Ei and Bi are the electric and the magnetic fields and ρ is the charge den-
sity. Here and throughout, Di denotes a spatial, covariant derivative with respect to the
coordinate xi . In flat space and Cartesian coordinates, it reduces to an ordinary partial
derivative.

The above equations involve only spatial derivatives of the electric and magnetic fields
and hold at each instant of time independently of the prior or subsequent evolution of
the fields. They therefore constrain any possible configurations of the fields, and are
correspondingly called the constraint equations.
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The second group of Maxwell equations is

∂t Ei = ϵi jk D j Bk − 4π ji (2.7)

∂t Bi = −ϵi jk D j Ek, (2.8)

where j i is the charge 3-current. These equations describe how the fields evolve forward
in time, and are therefore called the evolution equations. To completely determine the time
evolution of the electromagnetic fields we also have to specify how the sources ρ and j i

evolve according to the net force acting on them. Their motion depends on what forces are
acting on them, but the motion of the sources is less relevant for our discussion here. We do
note, however, that the total charge is conserved, as can be seen by taking the spatial diver-
gence of equation (2.7) and substituting the constraint (2.5) to get the continuity equation,

∂ρ

∂t
+ Di j i = 0. (2.9)

It is possible to bring Maxwell’s equations into a form that is closer to the 3+1 form of
Einstein’s equations that we will derive in this chapter. To do so, we introduce the vector
potential Aa = (%, Ai ) and write Bi as

Bi = ϵi jk D j Ak . (2.10)

By construction, Bi automatically satisfies the constraint (2.6). The two evolution equa-
tions (2.7) and (2.8) can be rewritten in terms of Ei and Ai :

∂t Ai = −Ei − Di% (2.11)

∂t Ei = Di D j A j − D j D j Ai − 4π ji . (2.12)

Exercise 2.2 Show that the evolution equations (2.11) and (2.12) preserve the
constraint (2.5); i.e., show that

∂

∂t
CE = 0. (2.13)

With the vector potential Ai we have introduced a gauge freedom into electrodynamics
which is expressed in the freely specifiable gauge variable %.

Exercise 2.3 Show that a transformation to a new “tilded” gauge according to

%̃ = % − ∂&

∂t
(2.14)

Ãi = Ai + Di& (2.15)

leaves the physical fields Ei and Bi unchanged.

The initial value problem in electrodynamics can now be solved in two steps. In the
first step, initial data (Ai , Ei ), together with the sources (ρ, j i ), are specified that satisfy
the constraint (2.5). In the second step, these fields are evolved according to the evolution
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equations

Ga0 = 8πT a0 (2.2)

do not furnish any of the information required for the dynamical evolution of the fields.
Rather, they supply four constraints on the initial data, i.e., four relations between gab and
∂t gab on the initial hypersurface at x0 = t . The only truly dynamical equations must be
provided by the six remaining relations

Gi j = 8πT i j . (2.3)

It is not surprising that there is a mismatch between the required number (10) of second
time derivatives ∂2

t gab and the available number (6) of dynamical field equations. After all,
there is always a fourfold ambiguity associated with the freedom to choose four different
coordinates to label points in spacetime. So, for example, we could always choose Gaussian
normal coordinates and set g00 = −1 and g0i = 0. That way we have six metric variables
gi j to evolve, six dynamical equations (2.3) to provide the required quantities ∂2

t gi j , and
four constraint equations (2.2) that relate gi j and ∂t gi j on the initial hypersurface. The
initial value problem thus appears to be solved, at least in principle.2

Exercise 2.1 Demonstrate that the constraint equations (2.2), if satisfied ini-
tially, are automatically satisfied at later times when the gravitational field is
evolved by using the dynamical equations (2.3). Equivalently, show that the relation
∂t (Ga0 − 8πT a0) = 0 will be satisfied at the initial time x0 = t , hence conclude that
equation (2.2) will be satisfied at x0 = t + δt , etc.
Hint: Use the Bianchi identities together with the equations of energy-momentum
conservation to evaluate ∇b(Gab − 8πT ab) at x0 = t .

The above discussion reveals that formulating the Cauchy problem in general relativity
logically involves a decomposition of 4-dimensional spacetime into 3-dimensional space
and one-dimensional time. In this chapter we will explore how this split induces a natural
“3 + 1” decomposition of Einstein’s equations and leads to the standard “3 + 1” equations
of general relativity. The 3 + 1 equations are entirely equivalent to the usual field equa-
tions (1.32) but they focus on the evolution of 12 purely spatial quantities closely related to
gi j and ∂t gi j and the constraints that they must satisfy on spatial hypersurfaces. Once these
spatial field quantities are specified on some initial “time slice” (i.e., spatial hypersurface)
consistent with the 3 + 1 constraint equations, the 3 + 1 evolution equations can then be

2 Only four of the 12 functions gi j and ∂t gi j represent true dynamical degrees of freedom that can be independently
specified on the initial hypersurface. The reason is as follows: In addition to the four constraint equations, one can choose
three arbitrary functions to induce coordinate transformations on the hypersurface without changing its geometry. Plus
there exists the freedom to choose the initial hypersurface in the embedding spacetime, which can be accomplished by
specifying one other arbitrary function. The remaining 12 − 4 − 3 − 1 = 4 freely specifiable quantities can be identified
with two sets of the pair of metric functions (gi j ,∂t gi j ), i.e., the 3-metric and its “velocity”. These four functions specify
the two dynamical degrees of freedom characterizing a gravitational field in general relativity (e.g., the two polarization
states of a gravitational wave). For further discussion, see Chapter 3 below and Wald (1984), Chapter 10.2.
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Einstein’s 
equations

2
The 3+1 decompostion of
Einstein’s equations

The major purpose of this book is to describe how to determine the dynamical evolution
of a physical system governed by Einstein’s equations of general relativity. For all but the
simplest systems, analytic solutions for the evolution of such systems do not exist. Hence
the task of solving Einstein’s equations must be performed numerically on a computer.
To construct algorithms to do this we first have to recast Einstein’s 4-dimensional field
equations (1.32) into a form that is suitable for numerical integration. In this chapter we
present such a formulation.

The problem of evolving the gravitational field in general relativity can be posed in
terms of a traditional initial value problem or “Cauchy” problem. This is a fundamental
problem arising in the mathematical theory of partial differential equations. In classical
dynamics, the evolution of a system is uniquely determined by the initial positions and
velocities of its constituents. By analogy, the evolution of a general relativistic gravitational
field is determined by specifying the metric quantities gab and ∂t gab at a given (initial)
instant of time t . In particular, we need to specify the metric field components and their
first time derivatives everywhere on some 3-dimensional spacelike hypersurface labeled
by coordinate x0 = t = constant. The different points on this surface are distinguished
by their spatial coordinates xi . Now these metric quantities can be integrated forward in
time provided we can obtain from the Einstein field equations expressions for ∂2

t gab at all
points on the hypersurface. That way we can integrate these expressions to compute gab

and ∂t gab on a new spacelike hypersurface at some new time t + δt , and then, by repeating
the process, obtain gab for all other points x0 and xi in the (future) spacetime.1

Obtaining the appropriate expressions for ∂2
t gab for such an integration is not so trivial.

We require 10 second derivatives and, at first sight, there appear to be 10 field equations,
Gab = 8πTab, that might furnish them. But note that the Bianchi identities ∇bGab = 0
give

∂t Ga0 = −∂i Gai − Gbc$a
bc − Gab$c

bc. (2.1)

Since no term on the right hand side of equation (2.1) contains third time derivatives or
higher, the four quantities Ga0 cannot contain second time derivatives. Hence the four

1 Here we are assuming, of course, that suitable boundary conditions and initial data are chosen so that these solutions
do indeed exist.
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The Maxwell equations can be written in a 3+1 form

Einstein
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Maxwell

378 Chapter 11 Recasting the evolution equations

however, exponentially growing modes are still very bad, and can easily terminate a
simulation after only a short time. In fact, many of the symmetric or strongly hyperbolic
systems that have been introduced over the years lead to such exponentially growing modes
in numerical implementations. Unless these modes can be controlled,9 these systems are not
very useful for numerical simulations. From a numerical perspective, then, well-posedness
is a necessary but not a sufficient condition.

In the following we will discuss several different approaches that lead to different
reformulations of the evolution equations that are both strongly hyperbolic and that have
been used successfully in numerical simulations. In the remainder of this chapter we
will pursue a more heuristic approach than the one sketched in this section and will
marshal mathematical intuition and exploit analogies to motivate the different approaches.
In fact, some of the systems discussed below were developed in exactly this way and were
discovered to have desirable numerical properties empirically before they were analyzed
mathematically and revealed to be strongly hyperbolic. To illustrate some of these heuristic
arguments for a simple and familiar example we will begin by discussing Maxwell’s
equations in Section 11.2.

11.2 Recasting Maxwell’s equations

In Chapter 2.2 we have seen that we can bring Maxwell’s evolution equations in a
Minkowski spacetime into the form

∂t Ai = −Ei − Di" (11.4)

∂t Ei = −D j D j Ai + Di D j A j − 4π ji (11.5)

(see equations 2.11 and 2.12). Recall that Ai is the three-vector potential, the magnetic
field satisfies Bi = ϵi jk D j Ak and therefore is automatically divergence-free, φ is a gauge
potential, and the electric field Ei has to satisfy the constraint equation (2.5),

Di Ei = 4πρe. (11.6)

In the above equations ρe is the electric charge density and ji the current density.
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2γi j (S − ρ))
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9 See, e.g., Scheel et al. (1998); Kidder et al. (2001) for examples.
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2.6 The constraint and evolution equations 41

The Hamiltonian constraint (2.90) and the momentum constraint (2.96) are the direct
equivalent of the constraints (2.5) and (2.6) in electrodynamics. They involve only the
spatial metric, the extrinsic curvature, and their spatial derivatives. They are the conditions
that allow a 3-dimensional slice ! with data (γab, Kab) to be embedded in a 4-dimensional
manifold M with data (gab). Field data (γab, Kab) that are being imposed on a timeslice
! have to satisfy the two constraint equations. We will discuss strategies for solving the
constraint equations and finding initial data that represent a snapshot of the gravitational
fields at a certain instant of time in Chapter 3.

The evolution equations that evolve the data (γab, Kab) forward in time can be found
from (2.53), which can be considered as the definition of the extrinsic curvature, and the
Ricci equation (2.82). However, the Lie derivative along na , Ln, is not a natural time
derivative since na is not dual to the surface 1-form #a , i.e., their dot product is not unity
but rather

na#a = −αgab∇at∇bt = α−1. (2.97)

Instead, consider the vector

ta = αna + βa, (2.98)

which is dual to #a for any spatial shift vector βa ,

ta#a = αna#a + βa#a = 1. (2.99)

It will prove useful to choose ta to be the congruence along which we propagate the spatial
coordinate grid from one time slice to the next slice. In other words, ta will connect points
with the same spatial coordinates on neighboring time slices. Then the shift vector βa

will measure the amount by which the spatial coordinates are shifted within a slice with
respect to the normal vector, as illustrated in Figure 2.4. As we have noted before, the lapse
function α measures how much proper time elapses between neighboring time slices along
the normal vector. The lapse and the shift therefore determine how the coordinates evolve
in time. The choice of α and βa is quite arbitrary, and we will postpone a discussion of
some common choices to Chapter 4. The freedom to choose these four gauge functions
α and βa completely arbitrarily embodies the four-fold coordinate degrees of freedom
inherent in general relativity.11 Specifically, the lapse function reflects the freedom to
choose the sequence of time slices, pushing them forward by different amounts of proper
time at different spatial points on a slice and thus exploiting “the many-fingered nature
of time”.12 The shift vector reflects the freedom to relabel spatial coordinates on each
slice in an arbitrary way. Observers who are “at rest” relative to the slices follow the
normal congruence na and are called either normal or Eulerian observers, while observers

11 Recall that βa is spatial and therefore subject to the constraint that naβa = 0, hence only three of its components may
be freely specified.

12 See, e.g., Misner et al. (1973), p. 527.
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Figure 2.3 Spatial basis vectors ea
(i) are Lie dragged from one spacelike slice to the next along the coordinate

congruence ta . Consequently, these basis vectors connect points with the same spatial coordinates on
neighboring slices (e.g., points A, B and C on slice t have the same spatial coordinates as points A′, B ′ and C ′,
respectively, on slice t + dt).

Exercise 2.23 Show that a spatial vector ea
(i) that is Lie dragged along ta remains

spatial, i.e., show that

Lt(!aea
(i)) = 0. (2.111)

As the fourth basis vector we pick ea
(0) = ta . Recall that we want to set the vector

congruence ta to be tangent to the coordinate line congruence and therefore connect points
with the same spatial coordinates on neighboring time slices. The duality condition (2.99)
then implies that ea

(0) has the components15

ta = ea
(0) = (1, 0, 0, 0). (2.112)

This means that the Lie derivative along ta reduces to a partial derivative with respect to
t : Lt = ∂t (see equation A.10).

From equation (2.109) we now find

!aea
(i) = − 1

α
naea

(i) = 0, (2.113)

which, since the ea
(i) span $, implies that the covariant spatial components of the normal

vector have to vanish,

ni = 0. (2.114)

Since spatial tensors vanish when contracted with the normal vector, this also means that
all components of spatial tensors with a contravariant index equal to zero must vanish. For
the shift vector, for example, this implies naβ

a = n0β
0 = 0 and hence

βa = (0,β i ). (2.115)

Solving equation (2.98) for na then yields the contravariant components

na = (α−1, −α−1β i ), (2.116)

15 Strictly, equation (2.112) is not a tensor equation, but rather a specification of components in the adopted basis. In the
abstract index notation of Wald (1984), the index a appearing on the left hand side would be denoted with a Greek
letter. Since the meaning is clear from the context, we do not make this distinction in the few places that it arises in
this book.
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This is the evolution equation for the extrinsic curvature. Note that all differential operators
and the Ricci tensor Rab are associated with the spatial metric γab.

Exercise 2.22 Show that raising an index in equation (2.106) yields

Lt K a
b = −Da Dbα + α(Ra

b + K K a
b) − 8πα(Sa

b − 1
2
γ a

b(S − ρ))

+Lβ K a
b. (2.107)

The evolution equation for the spatial metric γab, the last missing piece, can be found
directly from equation (2.53), again using equation (2.98),

Ltγab = −2αKab + Lβγab. (2.108)

The coupled evolution equations (2.106) and (2.108) determine the evolution of the
gravitational field data (γab, Kab). Together with the constraint equations (2.90) and (2.96)
they are completely equivalent to Einstein’s equations (2.83). Note we have succeeded
in recasting Einstein’s equations, which are second order in time in their original form,
as a coupled set of partial differential equations that are now first order in time. As in
electrodynamics, the evolution equations conserve the constraint equations, i.e., if the field
data (γab, Kab) satisfy the constraints at some time t and are evolved with the evolution
equations, then the data will also satisfy the constraint equations at all later times (see
exercises 2.1 and 2.2).

2.7 Choosing basis vectors: the ADM equations

So far, we have expressed our equations in a covariant, coordinate-independent manner,
i.e., the basis vectors ea

(b) have been completely arbitrary and have no particular relationship
to the 1-form &a or to the congruence defined by ta . It is quite intuitive, though, that things
will simplify if we adopt a coordinate system that reflects our 3 + 1 split of spacetime
in a natural way. We will see that the Lie derivative in the evolution equations (2.106)
and (2.108) then reduces to a partial derivative with respect to coordinate time and, as an
additional benefit, we will be able to ignore all timelike components of spatial tensors.

To do so, we first introduce a basis of three spatial vectors ea
(i) (the subscript i = 1, 2, 3

distinguishes the vectors, not the components; we again refer the reader to Section 2.1 for
a summary of our notation) that reside in a particular time slice ',14

&aea
(i) = 0. (2.109)

We extend our spatial vectors to other slices ' by Lie dragging along ta ,

Ltea
(i) = 0, (2.110)

as illustrated in Figure 2.3.

14 In the language of differential forms, the spatial vectors ea
(i) do not pierce the spatial hypersurface ': ⟨&̃, e(i)⟩ =

&aea
(i) = 0.
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Figure 2.1 A foliation of the spacetime M . The hypersurfaces ! are level surfaces of the coordinate time t ,
"a = ∇at . The normal vector na is orthogonal to these t = constant spatial hypersurfaces.

The 4-metric gab allows us to compute the norm of "a , which we call −α−2,

∥"∥2 = gab∇at∇bt ≡ − 1
α2

. (2.21)

As we will see more clearly later, α measures how much proper time elapses between
neighboring time slices along the normal vector "a to the slice, and is therefore called the
lapse function. We assume that α > 0, so that "a is timelike and the hypersurface ! is
spacelike everywhere.

Exercise 2.5 Show that the normalized 1-form

ωa ≡ α"a (2.22)

is rotation-free

ω[a∇bωc] = 0. (2.23)

We can now define the unit normal to the slices as

na ≡ −gabωb. (2.24)

Here the negative sign has been chosen so that na points in the direction of increasing t ,

naωa = −gabωaωb = 1. (2.25)

By construction, na is normalized and timelike,

nana = gabωaωb = −1, (2.26)

and may therefore be thought of as the 4-velocity of a “normal” observer whose worldline
is always normal to the spatial slices !.

With the normal vector we can now construct the spatial metric γab that is induced by
gab on the 3-dimensional hypersurfaces !,

γab = gab + nanb. (2.27)
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and from the normalization condition nana = −1 we find

na = (−α, 0, 0, 0). (2.117)

From the definition of the spatial metric (2.27) we have

γi j = gi j , (2.118)

meaning that the metric on # is just the spatial part of the 4-metric. Since zeroth components
of spatial contravariant tensors have to vanish, we also have γ a0 = 0. The inverse metric
can therefore be expressed as

gab = γ ab − nanb =
(

−α−2 α−2β i

α−2β j γ i j − α−2β iβ j

)

. (2.119)

Exercise 2.24 Show that

γ ikγk j = δi
j . (2.120)

Equation (2.120) implies that γ i j and γi j are 3-dimensional inverses, and can hence be
used to raise and lower spatial indices of spatial tensors. For example, the covariant form
of the shift vector is

βi = γi jβ
j . (2.121)

We can now invert (2.119) and find the components of the 4-dimensional metric

gab =
(

−α2 + βlβ
l βi

β j γi j

)

. (2.122)

Equivalently, the line element may be decomposed as

ds2 = −α2dt2 + γi j (dxi + β i dt)(dx j + β j dt), (2.123)

which is often refered to as the metric in 3 + 1 form. We may interpret this line element as
the Pythagorean theorem for a 4-dimensional spacetime, ds2 = − (proper time between
neighboring spatial hypersurfaces)2 + (proper distance within the spatial hypersurface)2.
This equation thus determines the invariant interval between neighboring points A and B,
as illustrated in Figure 2.4.

Exercise 2.25 Show that the determinant g = det(gab) of the spacetime metric gab

can be written as
√

−g = α
√

γ , (2.124)

where γ = det(γi j ) is the determinant of the spatial metric γi j .
Hint: Recall that for any square matrix Ai j the following is true: (A−1)i j = cofactor
of A ji/ det A.

Exercise 2.26 Use equation (2.123) directly to determine the proper time dτ

measured by a clock carried by a normal observer na in a coordinate time interval
dt .
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Thus γab is a projection tensor that projects out all geometric objects lying along na .
This metric allows us to compute distances within a slice ". To see that γab is purely
spatial, i.e., resides entirely in " with no piece along na , we contract it with the
normal na ,

naγab = nagab + nananb = nb − nb = 0. (2.28)

Intuitively, γab calculates the spacetime distance with gab and then kills off the timelike
contribution (normal to the spatial surface) with nanb. The inverse spatial metric can be
found by raising the indices of γab with gab,

γ ab = gacgbdγcd = gab + nanb. (2.29)

Next we break up 4-dimensional tensors by decomposing them into a purely spatial
part, which lies in the hypersurfaces ", and a timelike part, which is normal to the spatial
surface. To do so, we need two projection operators. The first one, which projects a 4-
dimensional tensor into a spatial slice, can be found by raising only one index of the spatial
metric γab

γ a
b = ga

b + nanb = δa
b + nanb. (2.30)

Exercise 2.6 Show that γ a
bv

b, where va is an arbitrary spacetime vector, is purely
spatial.

To project higher rank tensors into the spatial surface, each free index has to be contracted
with a projection operator. It is sometimes convenient to denote this projection with a
symbol ⊥, e.g.,

⊥ Tab = γ c
a γ d

b Tcd . (2.31)

Similarly, we may define the normal projection operator as

N a
b ≡ −nanb = δa

b − γ a
b, (2.32)

even though in most cases it is just as easy to write out the normal vectors nanb. We
can now use these two projection operators to decompose any tensor into its spatial and
timelike parts. For example, we can write an arbitrary vector va as

va = δa
bv

b = (γ a
b + N a

b)vb =⊥ va − nanbv
b. (2.33)

Exercise 2.7 Show that for the second rank tensor Tab we have

Tab =⊥ Tab − nanc ⊥ Tcb − nbnc ⊥ Tac + nanbncnd Tcd . (2.34)

Exercise 2.7 illustrates that the ⊥ symbol has to be used with some care, since it applies
only to the free indices of the tensor that it operates on. To avoid confusion, we will usually
write out the projection operators explicitly.
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and from the normalization condition nana = −1 we find

na = (−α, 0, 0, 0). (2.117)

From the definition of the spatial metric (2.27) we have

γi j = gi j , (2.118)

meaning that the metric on # is just the spatial part of the 4-metric. Since zeroth components
of spatial contravariant tensors have to vanish, we also have γ a0 = 0. The inverse metric
can therefore be expressed as

gab = γ ab − nanb =
(

−α−2 α−2β i

α−2β j γ i j − α−2β iβ j

)

. (2.119)

Exercise 2.24 Show that

γ ikγk j = δi
j . (2.120)

Equation (2.120) implies that γ i j and γi j are 3-dimensional inverses, and can hence be
used to raise and lower spatial indices of spatial tensors. For example, the covariant form
of the shift vector is

βi = γi jβ
j . (2.121)

We can now invert (2.119) and find the components of the 4-dimensional metric

gab =
(

−α2 + βlβ
l βi

β j γi j

)

. (2.122)

Equivalently, the line element may be decomposed as

ds2 = −α2dt2 + γi j (dxi + β i dt)(dx j + β j dt), (2.123)

which is often refered to as the metric in 3 + 1 form. We may interpret this line element as
the Pythagorean theorem for a 4-dimensional spacetime, ds2 = − (proper time between
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where γ = det(γi j ) is the determinant of the spatial metric γi j .
Hint: Recall that for any square matrix Ai j the following is true: (A−1)i j = cofactor
of A ji/ det A.

Exercise 2.26 Use equation (2.123) directly to determine the proper time dτ

measured by a clock carried by a normal observer na in a coordinate time interval
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The Hamiltonian constraint (2.90) and the momentum constraint (2.96) are the direct
equivalent of the constraints (2.5) and (2.6) in electrodynamics. They involve only the
spatial metric, the extrinsic curvature, and their spatial derivatives. They are the conditions
that allow a 3-dimensional slice ! with data (γab, Kab) to be embedded in a 4-dimensional
manifold M with data (gab). Field data (γab, Kab) that are being imposed on a timeslice
! have to satisfy the two constraint equations. We will discuss strategies for solving the
constraint equations and finding initial data that represent a snapshot of the gravitational
fields at a certain instant of time in Chapter 3.

The evolution equations that evolve the data (γab, Kab) forward in time can be found
from (2.53), which can be considered as the definition of the extrinsic curvature, and the
Ricci equation (2.82). However, the Lie derivative along na , Ln, is not a natural time
derivative since na is not dual to the surface 1-form #a , i.e., their dot product is not unity
but rather

na#a = −αgab∇at∇bt = α−1. (2.97)

Instead, consider the vector

ta = αna + βa, (2.98)

which is dual to #a for any spatial shift vector βa ,

ta#a = αna#a + βa#a = 1. (2.99)

It will prove useful to choose ta to be the congruence along which we propagate the spatial
coordinate grid from one time slice to the next slice. In other words, ta will connect points
with the same spatial coordinates on neighboring time slices. Then the shift vector βa

will measure the amount by which the spatial coordinates are shifted within a slice with
respect to the normal vector, as illustrated in Figure 2.4. As we have noted before, the lapse
function α measures how much proper time elapses between neighboring time slices along
the normal vector. The lapse and the shift therefore determine how the coordinates evolve
in time. The choice of α and βa is quite arbitrary, and we will postpone a discussion of
some common choices to Chapter 4. The freedom to choose these four gauge functions
α and βa completely arbitrarily embodies the four-fold coordinate degrees of freedom
inherent in general relativity.11 Specifically, the lapse function reflects the freedom to
choose the sequence of time slices, pushing them forward by different amounts of proper
time at different spatial points on a slice and thus exploiting “the many-fingered nature
of time”.12 The shift vector reflects the freedom to relabel spatial coordinates on each
slice in an arbitrary way. Observers who are “at rest” relative to the slices follow the
normal congruence na and are called either normal or Eulerian observers, while observers

11 Recall that βa is spatial and therefore subject to the constraint that naβa = 0, hence only three of its components may
be freely specified.

12 See, e.g., Misner et al. (1973), p. 527.
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Figure 2.4 Pythagorean theorem in 3 + 1 dimensional spacetime. The normal vector αna and the time vector ta

connect points on two neighboring spatial slices. The shift vector β i resides in the slice and measures their
difference. The infinitesimal displacement vector dxa connects two nearby, but otherwise arbitrary, points on
neighboring slices (e.g., the point A at xi on slice t and the point B at xi + dxi on slice t + dt). The total
displacement vector dxa = tadt + dxi , where dxi is the spatial vector drawn in the figure, may be decomposed
alternatively into two vectors that form the legs of a right-triangle, dxa = (αnadt) + (dxi + β i dt), as shown.
Using this decomposition to evaluate the invariant interval ds2 = dxadxa , commonly expanded as in
equation (1.1), yields the Pythagorean theorem, equation (2.123).

The entire content of any spatial tensor is available from their spatial components. This
is obviously true for contravariant components, since their zeroth component vanishes,
but also holds covariant components. Therefore, the entire content of the decomposed
Einstein equations is contained in their spatial components alone, and we can rewrite the
Hamiltonian constraint (2.90),

R + K 2 − Ki j K i j = 16πρ, (2.125)

the momentum constraint (2.96),

D j (K i j − γ i j K ) = 8π Si , (2.126)

the evolution equation for the extrinsic curvature (2.106),

∂t Ki j = −Di D jα + α(Ri j − 2Kik K k
j + K Ki j ) − 8πα(Si j − 1

2γi j (S − ρ))
+βk Dk Ki j + Kik D jβ

k + Kkj Diβ
k,

(2.127)

and the evolution equation for the spatial metric (2.108),

∂tγi j = −2αKi j + Diβ j + D jβi . (2.128)

Equations (2.125)–(2.128) are equivalent to Einstein’s equations (2.83) and comprise the
“standard” 3 + 1 equations. Sometimes they are referred to as the “ADM” equations after
Arnowitt, Deser and Misner,16 even though these equations had been derived earlier,17 and
even though Arnowitt et al. (1962) derived the equations in a different form.18

16 Arnowitt et al. (1962).
17 E.g., Darmois (1927); Lichnerowicz (1944); Fourès-Bruhat (1956).
18 See, e.g., Anderson and York, Jr. (1998) for a discussion.
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I am forced to ask:

Why are you making 
things so complicated?

Geodesic slicing:

100 Chapter 4 Choosing coordinates: the lapse and shift

slicing or a time coordinate therefore amounts to making a choice for the lapse function.
Letting the lapse vary with position across the spatial slice takes advantage of the freedom
that proper time can advance at different rates at different points on a given slice (“the
many-fingered nature of time”). The shift β i , on the other hand, determines how spatial
points at rest with respect to a normal observer na are relabeled on neighboring slices. The
spatial gauge is therefore imposed by a choice for the shift vector.

In the rest of this chapter we will discuss a few different gauge choices that are commonly
used in numerical simulations. We will focus here on some of the simpler conditions that
lend themselves to straightforward geometric interpretation and provide us with valuable
intuition. In later chapters we will observe these and other choices in action when we
study actual simulations that construct numerical spacetimes. There we will see how well
different gauge conditions perform in different physical situations. A brief summary of a
few common gauge choices is provided in Box 4.1 for the reader eager and willing to order
from a limited, but representative, menu.

4.1 Geodesic slicing

Since the lapse α and the shift β i can be chosen freely, let us first consider the simplest
possible choice,

α = 1, β i = 0. (4.1)

In the context of numerical relativity this gauge choice is often called geodesic slicing; the
resulting coordinates are also known as Gaussian-normal coordinates.4

Recall that coordinate observers move with 4-velocities ua = ta = ea
(0) (i.e., spatial

velocities ui = 0). Thus with β i = 0, coordinate observers coincide with normal observers
(ua = na). With α = 1, the proper time intervals that they measure agree with coordinate
time intervals. Their acceleration is given by equation (2.51),

ab = Db ln α = 0. (4.2)

Evidently, since their acceleration vanishes, normal observers are freely-falling and there-
fore follow geodesics, hence the name of this slicing condition. Clearly, the evolution
equations (2.134) and (2.135) simplify significantly when geodesic slicing is adopted.

Exercise 4.1 Consider the Robertson–Walker metric for a flat Friedmann cosmol-
ogy,

ds2 = −dt2 + a2(t) ηi j dxi dx j , (4.3)

where the expansion factor a(t) is a function of time only. We can immediately
read off the lapse and shift to be α = 1 and β i = 0, showing that this spacetime is
geodesically sliced.
(a) Identify the spatial metric γi j and find the extrinsic curvature Ki j .

4 Darmois (1927) used these coordinates in his very early development of the 3+1 decomposition.

Boom!



We now have Einstein’s equations in a 3+1 form

Maxwell
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The entire content of any spatial tensor is available from their spatial components. This
is obviously true for contravariant components, since their zeroth component vanishes,
but also holds covariant components. Therefore, the entire content of the decomposed
Einstein equations is contained in their spatial components alone, and we can rewrite the
Hamiltonian constraint (2.90),

R + K 2 − Ki j K i j = 16πρ, (2.125)
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D j (K i j − γ i j K ) = 8π Si , (2.126)

the evolution equation for the extrinsic curvature (2.106),

∂t Ki j = −Di D jα + α(Ri j − 2Kik K k
j + K Ki j ) − 8πα(Si j − 1

2γi j (S − ρ))
+βk Dk Ki j + Kik D jβ

k + Kkj Diβ
k,

(2.127)

and the evolution equation for the spatial metric (2.108),

∂tγi j = −2αKi j + Diβ j + D jβi . (2.128)

Equations (2.125)–(2.128) are equivalent to Einstein’s equations (2.83) and comprise the
“standard” 3 + 1 equations. Sometimes they are referred to as the “ADM” equations after
Arnowitt, Deser and Misner,16 even though these equations had been derived earlier,17 and
even though Arnowitt et al. (1962) derived the equations in a different form.18

16 Arnowitt et al. (1962).
17 E.g., Darmois (1927); Lichnerowicz (1944); Fourès-Bruhat (1956).
18 See, e.g., Anderson and York, Jr. (1998) for a discussion.
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however, exponentially growing modes are still very bad, and can easily terminate a
simulation after only a short time. In fact, many of the symmetric or strongly hyperbolic
systems that have been introduced over the years lead to such exponentially growing modes
in numerical implementations. Unless these modes can be controlled,9 these systems are not
very useful for numerical simulations. From a numerical perspective, then, well-posedness
is a necessary but not a sufficient condition.

In the following we will discuss several different approaches that lead to different
reformulations of the evolution equations that are both strongly hyperbolic and that have
been used successfully in numerical simulations. In the remainder of this chapter we
will pursue a more heuristic approach than the one sketched in this section and will
marshal mathematical intuition and exploit analogies to motivate the different approaches.
In fact, some of the systems discussed below were developed in exactly this way and were
discovered to have desirable numerical properties empirically before they were analyzed
mathematically and revealed to be strongly hyperbolic. To illustrate some of these heuristic
arguments for a simple and familiar example we will begin by discussing Maxwell’s
equations in Section 11.2.

11.2 Recasting Maxwell’s equations

In Chapter 2.2 we have seen that we can bring Maxwell’s evolution equations in a
Minkowski spacetime into the form

∂t Ai = −Ei − Di" (11.4)

∂t Ei = −D j D j Ai + Di D j A j − 4π ji (11.5)

(see equations 2.11 and 2.12). Recall that Ai is the three-vector potential, the magnetic
field satisfies Bi = ϵi jk D j Ak and therefore is automatically divergence-free, φ is a gauge
potential, and the electric field Ei has to satisfy the constraint equation (2.5),

Di Ei = 4πρe. (11.6)

In the above equations ρe is the electric charge density and ji the current density.
In Chapter 2.7 we have discussed some of the similarities of Maxwell’s equations in the

above form with the ADM evolution equations (2.134) and (2.135), namely

∂tγi j = −2αKi j + Diβ j + D jβi (11.7)

and

∂t Ki j = α(Ri j − 2Kik K k
j + K Ki j ) − Di D jα − 8πα(Si j − 1

2γi j (S − ρ))

+βk∂k Ki j + Kik∂ jβ
k + Kk j∂iβ

k .
(11.8)

9 See, e.g., Scheel et al. (1998); Kidder et al. (2001) for examples.
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however, exponentially growing modes are still very bad, and can easily terminate a
simulation after only a short time. In fact, many of the symmetric or strongly hyperbolic
systems that have been introduced over the years lead to such exponentially growing modes
in numerical implementations. Unless these modes can be controlled,9 these systems are not
very useful for numerical simulations. From a numerical perspective, then, well-posedness
is a necessary but not a sufficient condition.

In the following we will discuss several different approaches that lead to different
reformulations of the evolution equations that are both strongly hyperbolic and that have
been used successfully in numerical simulations. In the remainder of this chapter we
will pursue a more heuristic approach than the one sketched in this section and will
marshal mathematical intuition and exploit analogies to motivate the different approaches.
In fact, some of the systems discussed below were developed in exactly this way and were
discovered to have desirable numerical properties empirically before they were analyzed
mathematically and revealed to be strongly hyperbolic. To illustrate some of these heuristic
arguments for a simple and familiar example we will begin by discussing Maxwell’s
equations in Section 11.2.

11.2 Recasting Maxwell’s equations

In Chapter 2.2 we have seen that we can bring Maxwell’s evolution equations in a
Minkowski spacetime into the form

∂t Ai = −Ei − Di" (11.4)

∂t Ei = −D j D j Ai + Di D j A j − 4π ji (11.5)

(see equations 2.11 and 2.12). Recall that Ai is the three-vector potential, the magnetic
field satisfies Bi = ϵi jk D j Ak and therefore is automatically divergence-free, φ is a gauge
potential, and the electric field Ei has to satisfy the constraint equation (2.5),

Di Ei = 4πρe. (11.6)

In the above equations ρe is the electric charge density and ji the current density.
In Chapter 2.7 we have discussed some of the similarities of Maxwell’s equations in the

above form with the ADM evolution equations (2.134) and (2.135), namely

∂tγi j = −2αKi j + Diβ j + D jβi (11.7)

and

∂t Ki j = α(Ri j − 2Kik K k
j + K Ki j ) − Di D jα − 8πα(Si j − 1

2γi j (S − ρ))

+βk∂k Ki j + Kik∂ jβ
k + Kkj∂iβ

k .
(11.8)

9 See, e.g., Scheel et al. (1998); Kidder et al. (2001) for examples.
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3.1 Conformal transformations 65

Our desire to simplify equations motivates the choice β = 0, so that we treat K as a
conformal invariant, K = K̄ . With these choices, the Hamiltonian constraint now becomes

8D̄2ψ − ψ R̄ − 2
3
ψ5 K 2 + ψ−7 Āi j Āi j = −16πψ5ρ, (3.37)

and the momentum constraint is

D̄ j Āi j − 2
3
ψ6γ̄ i j D̄ j K = 8πψ10Si . (3.38)

Exercise 3.7 Consider the weak-field limit of equation (3.37) under the same
assumptions as in Exercise 2.28. Then compare with the Poisson equation for the
Newtonian gravitational potential & to show that

ψ = 1 − 1
2
& (3.39)

in the weak-field limit, assuming suitable boundary conditions for ψ and &.

In addition to the spatial metric and extrinsic curvature, it may also be necessary
to transform the matter sources ρ and Si in (3.37) and (3.38) to insure uniqueness of
solutions.15 We will largely ignore this issue in this chapter, but it is nevertheless instructive
to discuss its origin in passing.

We start by considering the linear equation

∇2u = f u (3.40)

on some domain '. Here f is some given function, and we will assume u = 0 on the
boundary ∂'. If f is nonnegative everywhere, we can apply the maximum principle to
show that u = 0 everywhere. The point is that if u were nonzero somewhere in ', say
positive, then it must have a maximum somewhere. At the maximum the left hand side
of (3.40) must be negative, but the right hand side is nonnegative if f ≥ 0, which is
a contradiction. Clearly, the argument works the same way if u is negative somewhere,
implying that u = 0 everywhere if f ≥ 0.

Now consider the nonlinear equation

∇2u = f un, (3.41)

and assume there exist two positive solutions u1 and u2 ≥ u1 that are identical, u1 = u2,
on the boundary ∂'. The difference )u = u2 − u1 must then satisfy an equation

∇2)u = n f ũn−1)u, (3.42)

where ũ is some positive function satisfying u1 ≤ ũ ≤ u2. Applying the above argument to
)u, we see that the maximum principle implies )u = 0 and hence uniqueness of solutions

15 See, e.g., York, Jr. (1979).
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however, exponentially growing modes are still very bad, and can easily terminate a
simulation after only a short time. In fact, many of the symmetric or strongly hyperbolic
systems that have been introduced over the years lead to such exponentially growing modes
in numerical implementations. Unless these modes can be controlled,9 these systems are not
very useful for numerical simulations. From a numerical perspective, then, well-posedness
is a necessary but not a sufficient condition.
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reformulations of the evolution equations that are both strongly hyperbolic and that have
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2γi j (S − ρ))

+βk∂k Ki j + Kik∂ jβ
k + Kk j∂iβ

k .
(11.8)

9 See, e.g., Scheel et al. (1998); Kidder et al. (2001) for examples.
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Figure 2.4 Pythagorean theorem in 3 + 1 dimensional spacetime. The normal vector αna and the time vector ta

connect points on two neighboring spatial slices. The shift vector β i resides in the slice and measures their
difference. The infinitesimal displacement vector dxa connects two nearby, but otherwise arbitrary, points on
neighboring slices (e.g., the point A at xi on slice t and the point B at xi + dxi on slice t + dt). The total
displacement vector dxa = tadt + dxi , where dxi is the spatial vector drawn in the figure, may be decomposed
alternatively into two vectors that form the legs of a right-triangle, dxa = (αnadt) + (dxi + β i dt), as shown.
Using this decomposition to evaluate the invariant interval ds2 = dxadxa , commonly expanded as in
equation (1.1), yields the Pythagorean theorem, equation (2.123).

The entire content of any spatial tensor is available from their spatial components. This
is obviously true for contravariant components, since their zeroth component vanishes,
but also holds covariant components. Therefore, the entire content of the decomposed
Einstein equations is contained in their spatial components alone, and we can rewrite the
Hamiltonian constraint (2.90),

R + K 2 − Ki j K i j = 16πρ, (2.125)

the momentum constraint (2.96),

D j (K i j − γ i j K ) = 8π Si , (2.126)

the evolution equation for the extrinsic curvature (2.106),

∂t Ki j = −Di D jα + α(Ri j − 2Kik K k
j + K Ki j ) − 8πα(Si j − 1

2γi j (S − ρ))
+βk Dk Ki j + Kik D jβ

k + Kkj Diβ
k,

(2.127)

and the evolution equation for the spatial metric (2.108),

∂tγi j = −2αKi j + Diβ j + D jβi . (2.128)

Equations (2.125)–(2.128) are equivalent to Einstein’s equations (2.83) and comprise the
“standard” 3 + 1 equations. Sometimes they are referred to as the “ADM” equations after
Arnowitt, Deser and Misner,16 even though these equations had been derived earlier,17 and
even though Arnowitt et al. (1962) derived the equations in a different form.18

16 Arnowitt et al. (1962).
17 E.g., Darmois (1927); Lichnerowicz (1944); Fourès-Bruhat (1956).
18 See, e.g., Anderson and York, Jr. (1998) for a discussion.
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- 4 constraint equations

3
Constructing initial data

As we have seen in Chapter 2, the spatial metric γi j , the extrinsic curvature Ki j and any
matter fields have to satisfy the Hamiltonian constraint (2.132),

R + K 2 − Ki j K i j = 16πρ, (3.1)

and the momentum constraint (2.133),

D j (K i j − γ i j K ) = 8π Si (3.2)

on every spacelike hypersurface $. Before we can evolve the fields to obtain a spacetime
that satisfies Einstein’s equations, we have to specify gravitational fields (γi j , Ki j ) on some
initial spatial slice $ that are compatible with the constraint equations. These fields can
then be used as “starting values” for a dynamical evolution obtained by integrating the
evolution equations (2.135) and (2.134).1

Clearly, the four constraint equations (3.1) and (3.2) cannot determine all of the gravita-
tional fields (γi j , Ki j ). Since both γi j and Ki j are symmetric, 3-dimensional tensors, they
together have 12 independent components. The four constraint equations can only deter-
mine four of these, leaving eight undetermined. Four of these eight undetermined functions
are related to coordinate choices: three specify the spatial coordinates within the slice $,
and these coordinates can be chosen arbitrarily without changing the physical properties
of the slice. One function, associated with the time coordinate, can be used to specify the
choice of the hypersurface $. For any given spacetime solution to Einstein’s equations,
choosing different hypersurfaces on which to obtain initial data, and then propagating
these data, regenerates physically equivalent spacetimes. This leaves four undetermined
functions that represent the two dynamical degrees of freedom characterizing a gravita-
tional field in general relativity, e.g., two independent sets of values for the conjugate pair
(γi j , Ki j ). These two dynamical degrees of freedom correspond to the two polarization
modes of a gravitational wave in general relativity.2

It is quite intuitive that the state of a dynamical field, like a gravitational wave, cannot be
determined from constraint equations. Waves satisfy hyperbolic equations, and their state

1 If there is any matter present, then the matter fields must be specified on the initial hypersurface as well, and the
matter evolution equations, ∇bT ab = 0, must be integrated simultaneously with the field evolution equations to build
a spacetime. Some typical matter sources and their evolution equations are discussed in Chapter 5.

2 This is the same number of degrees of freedom in the linearized theory of general relativity appropriate for a weak
gravitational field; the field equations in this limit reduce to propagation equations for a spin-2 linear field in Minkowski
spacetime.
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Schwarzschild in isotropic coordinates is good for 

initial data and avoiding singularities

Schwarzschild coordinates:

3.1 Conformal transformations 59

Schwarzschild solution in isotropic coordinates, which we have seen before in Chapter 2.
Inspection of the metric (2.147),

dl2 = γi j dxi dx j =
(

1 + M
2r

)4

ηi j dxi dx j =
(

1 + M
2r

)4 (
dr2 + r2(dθ2 + sin2 θdφ2)

)
,

(3.19)

shows that it is explicitly written in the form (3.5), where the conformally related metric
is the flat metric in spherical polar coordinates. This solution forms the basis of the so-
called puncture methods for black holes, which we will discuss in much greater detail in
Chapters 12.2.2 and 13.1.3.

While the formalism of conformal decomposition may appear unnecessarily technical
and perhaps confusing initially, this example demonstrates that it provides an extremely
powerful tool for constructing solutions to Einstein’s equations. In fact, once the formalism
has been developed, it is much easier to derive the Schwarzschild solution by going through
the above steps then deriving it from Einstein’s equations directly. Perhaps even more
impressively, we will see below that we can trivially generalize this method to construct
multiple black hole initial data. Before we do that, though, it is useful to discuss the single
black hole solution in more detail.

The solution (3.19) is singular at r = 0. However, we can show that this singularity is
only a coordinate singularity by considering the coordinate transformation

r =
(M

2

)2 1
r̂
, (3.20)

under which the isotropic Schwarzschild metric (3.19) becomes

dl2 =
(

1 + M
2r̂

)4 (
dr̂2 + r̂2(dθ2 + sin2 θdφ2)

)
. (3.21)

The geometry described by metric (3.21) evaluated at a radius r̂ = a is identical to that
of the metric (3.19) evaluated at r = a. The mapping (3.20) therefore maps the metric
into itself, and is hence an isometry. In particular, this demonstrates that the origin r = 0
is isomorphic to spatial infinity, which is perfectly regular. The same conclusion can be
reached by considering a coordinate transformation between the isotropic radius r to a
Schwarzschild areal radius R. This demonstrates that the isotropic radius r covers only
the black hole exterior, and that each Schwarzschild R corresponds to two values of the
isotropic radius r .

Exercise 3.4 Find the coordinate transformation between the isotropic radius r and
Schwarzschild radius R that brings the isotropic Schwarzschild metric (3.19) into
the Schwarzschild form

dl2 =
(

1 − 2M
R

)−1

d R2 + R2(dθ2 + sin2 θdφ2). (3.22)

• r = 0 is a coord. singularity, corresponding 
 to infinity in the “other universe” 

• Outside the horizon this is standard Schwarzschild
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This generalizes to multiple black holes

This equation is linear!

3.1 Conformal transformations 61

Figure 3.2 Schematic embedding diagram of the geometry described by metric (3.23) for two black holes at a
moment of time symmetry. This is the three-sheeted topology, which does not satisfy an isometry across each
throat.

we obtain the solution simply by adding the individual contribution of each black hole
according to

ψ = 1 +
∑

α

Mα

2rα

. (3.23)

Here rα = |xi − Ci
α| is the (coordinate) separation from the center Ci

α of the αth black
hole. The total mass of the spacetime is the sum of the coefficients Mα. However, since
the total mass will also include contributions from the black hole interactions, Mα can
be identified with the mass of the αth black hole only in the limit of large separations.
Particularly interesting astrophysically and for the generation of gravitational waves is the
case of binary black holes, in which case (3.23) reduces to

ψ = 1 + M1

2r1
+ M2

2r2
. (3.24)

This simple solution to the constraint equations for two black holes instantaneously at rest
at a moment of time symmetry can be used as initial data for head-on collisions of black
holes (see Chapter 13.2).

We can now define mappings equivalent to (3.20), which represent reflections through
the αth throat. In general, the existence of other black holes destroys the symmetry that we
found for a single black hole. Each Einstein–Rosen bridge therefore connects to its own
asymptotically flat Universe. Drawing an embedding diagram for such a geometry yields
several different “sheets”, where each sheet corresponds to one Universe. A geometry
containing N black holes may contain up to N + 1 different asymptotically flat universes
(see Figure 3.2).

If desired, however, the isometry across the throats can be restored as follows. Recall
that equation (3.16) is equivalent to the Laplace equation in electrostatics, so that we
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Assume:  

• Conformal flatness: 
• Maximal slicing: 

• Time reversal invariance:
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located at

rISCO = (24λ)1/5 R ≈ 2.05R, (12.36)

implying that such a binary would reach the ISCO just before the two stars touch. We
have plotted this result in Figure 12.2 for identical stars of compaction m/R = 0.2, where
m = M/2 is the mass of the individual stars; we also show the combined effects of
relativistic corrections and tidal interactions in determining the ISCO. For compressible
stars λ is smaller than 3/2, so that in Newtonian gravitation these stars would merge before
they could encounter any ISCO. However, in general relativity, for identical irrotational
companions constructed with a moderately stiff equation of state, the entire equilibrium
sequence actually terminates at a finite separation prior to merger, at which point the stellar
density profiles form a cusp (see Chapter 15.3). Orbital decay beyond this point will then
trigger some tidal disruption prior to eventual merger (see Chapter 16).

After reaching the ISCO, the binary companions plunge and merge on an orbital time
scale. Depending on the nature and masses of the compact companions, their coalescence
leads to the formation of a merged object, or remnant, that may either be a rotating neutron
star or a black hole. During the final ringdown phase of the binary evolution this remnant
settles down into an equilibrium state. In the case of a hypermassive neutron star, secular
effects (viscosity or magnetic fields) can lead later to delayed collapse to a black hole (see
Chapters 14 and 16.)

During the inspiral phase, up to reasonably small binary separations, the binary can
be modeled very accurately by post-Newtonian expansions (see Appendix D). The ring-
down phase can be described very well by strong-field perturbative techniques. Numerical
relativity simulations are needed to connect these two regimes, beginning with the late
inspiral phase, and continuing through the dynamical plunge and merger phase. Numerical
relativity is also required to treat delayed collapse. Not surprisingly, considerable effort in
numerical relativity has focused on compact binaries in close quasicircular orbits. In the
rest of this chapter we will construct initial data for binary black holes in such orbits.

12.2 The conformal transverse-traceless approach: Bowen–York

12.2.1 Solving the momentum constraint

In the transverse-traceless approach we assume both conformal flatness, so that γ̄i j = ηi j ,
and maximal slicing, so that K = 0. The momentum constraint (12.4) then reduces to

D̄ j Āi j = 0, (12.37)

where D̄ j is now a flat-space covariant derivative. In Cartesian coordinates this operator
reduces to the partial derivative ∂ j . Our assumptions have simplified the momentum
constraint to the point where the decomposition of Āi j into a transverse and a longitudinal
part (see equation 3.48) is somewhat pointless, since both of them now have vanishing
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Exercise 3.1 Verify the transformation law (3.7) from (2.141).

Exercise 3.2 Show that the covariant derivative associated with the connection (3.7)
is compatible with the conformally related metric,

D̄i γ̄ jk = 0. (3.9)

For the Ricci tensor we similarly find

Ri j = R̄i j − 2
(

D̄i D̄ j ln ψ + γ̄i j γ̄
lm D̄l D̄m ln ψ

)

+ 4
(

(D̄i ln ψ)(D̄ j ln ψ) − γ̄i j γ̄
lm(D̄l ln ψ)(D̄m ln ψ)

)
, (3.10)

and for the scalar curvature

R = ψ−4 R̄ − 8ψ−5 D̄2ψ. (3.11)

Here D̄2 = γ̄ i j D̄i D̄ j is the covariant Laplace operator associated with γ̄i j .

Exercise 3.3 Verify equations (3.10) and (3.11).

Inserting the scalar curvature (3.11) into the Hamiltonian constraint (3.1) yields

8D̄2ψ − ψ R̄ − ψ5 K 2 + ψ5 Ki j K i j = −16πψ5ρ, (3.12)

which, for a given choice of the conformally related metric γ̄i j , we may interpret as
an equation for the conformal factor ψ . The extrinsic curvature Ki j has to satisfy the
momentum constraint (3.2), and it will be useful to rescale Ki j conformally as well. We
will do that in Section 3.1.3, after discussing in Section 3.1.2 some elementary solutions
to (3.12) for which Ki j = 0.

3.1.2 Elementary black hole solutions

At this point it is instructive to consider some simple, but physically interesting, solutions
to the constraint equation. Consider vacuum solutions for which the matter source terms
vanish (ρ = 0 = Si , etc.) and focus on a “moment of time symmetry”. At a moment of
time symmetry, all time derivatives of γi j are zero and the 4-dimensional line interval has
to be invariant under time reversal, t → −t . The latter condition implies that the shift
must satisfy β i = 0 and, hence, by equation (2.134), the extrinsic curvature also has to
vanish everywhere on the slice, i.e., Ki j = 0 = K .6 On such a time slice the momen-
tum constraints (3.2) are satisfied trivially. The Hamiltonian constraint (3.12) reduces
to

D̄2ψ = 1
8
ψ R̄. (3.13)

6 A 4-geometry is said to be time-symmetric if there exists such a time slice.

Then:  

• Momentum constraint                                   satisfied trivially 
• Hamiltonian constraint:
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Figure 2.4 Pythagorean theorem in 3 + 1 dimensional spacetime. The normal vector αna and the time vector ta

connect points on two neighboring spatial slices. The shift vector β i resides in the slice and measures their
difference. The infinitesimal displacement vector dxa connects two nearby, but otherwise arbitrary, points on
neighboring slices (e.g., the point A at xi on slice t and the point B at xi + dxi on slice t + dt). The total
displacement vector dxa = tadt + dxi , where dxi is the spatial vector drawn in the figure, may be decomposed
alternatively into two vectors that form the legs of a right-triangle, dxa = (αnadt) + (dxi + β i dt), as shown.
Using this decomposition to evaluate the invariant interval ds2 = dxadxa , commonly expanded as in
equation (1.1), yields the Pythagorean theorem, equation (2.123).

The entire content of any spatial tensor is available from their spatial components. This
is obviously true for contravariant components, since their zeroth component vanishes,
but also holds covariant components. Therefore, the entire content of the decomposed
Einstein equations is contained in their spatial components alone, and we can rewrite the
Hamiltonian constraint (2.90),

R + K 2 − Ki j K i j = 16πρ, (2.125)

the momentum constraint (2.96),

D j (K i j − γ i j K ) = 8π Si , (2.126)

the evolution equation for the extrinsic curvature (2.106),

∂t Ki j = −Di D jα + α(Ri j − 2Kik K k
j + K Ki j ) − 8πα(Si j − 1

2γi j (S − ρ))
+βk Dk Ki j + Kik D jβ

k + Kkj Diβ
k,

(2.127)

and the evolution equation for the spatial metric (2.108),

∂tγi j = −2αKi j + Diβ j + D jβi . (2.128)

Equations (2.125)–(2.128) are equivalent to Einstein’s equations (2.83) and comprise the
“standard” 3 + 1 equations. Sometimes they are referred to as the “ADM” equations after
Arnowitt, Deser and Misner,16 even though these equations had been derived earlier,17 and
even though Arnowitt et al. (1962) derived the equations in a different form.18

16 Arnowitt et al. (1962).
17 E.g., Darmois (1927); Lichnerowicz (1944); Fourès-Bruhat (1956).
18 See, e.g., Anderson and York, Jr. (1998) for a discussion.
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Let us further choose the conformally related metric to be flat,

γ̄i j = ηi j . (3.14)

Whenever this is the case, we call the physical spatial metric γi j conformally flat.
We again emphasize that we only consider conformal transformations of the spatial

metric in this text. Accordingly, “conformal flatness” refers, for our purposes, to the spatial
metric and not the spacetime metric. In four or any higher dimensions, we can evaluate the
Weyl tensor to examine whether any given metric is conformally flat. This is a consequence
of the fact that the Weyl tensor (1.26) is invariant under conformal transformations of the
spacetime metric – this explains why it is often called the conformal tensor.7 Since it
vanishes for a flat metric, it must also vanish for all geometries that are conformally related
to the flat metric. In three dimensions, however, the Weyl tensor vanishes identically, so
that it no longer provides a useful diagnostic. For a spatial metric, we may instead evaluate
the Bach or Cotton–York tensor

Bi j = γ 1/3[ikl]Dk

(
R j

l − 1
4
δ

j
l R

)
, (3.15)

which vanishes if and only if the spatial geometry is conformally flat.8 In equation (3.15),
[ikl] is the completely antisymmetric, or permutation, symbol, with [123] = 1.

As an aside, we note that any spherically symmetric spatial metric is always conformally
flat, meaning that we can always write such a metric as γi j = ψ4ηi j . For any spherically
symmetric space, we may hence assume conformal flatness without loss of generality.

Assuming conformal flatness dramatically simplifies all calculations, since D̄i reduces to
the flat covariant derivative (and in particular to partial derivatives in Cartesian coordinates).
Moreover, the Ricci tensor and scalar curvature associated with the conformally related
metric must now vanish, R̄i j = R̄ = 0. Under this assumption, the Hamiltonian constraint
becomes the remarkably simple Laplace equation

D̄2ψ = 0, (3.16)

where D̄2 is now the flat Laplace operator. We will be interested in asymptotically flat
solutions that satisfy

ψ → 1 + O(r−1) for r → ∞ (3.17)

where r is the coordinate radius. Spherically symmetric solutions are

ψ = 1 + M
2r

. (3.18)

We will show in exercise 3.20 below that, in this particular case, the constant M is in
fact the black hole mass M . It shouldn’t come as a great surprise that this is just the

7 See, e.g., page 130 in Carroll (2004).
8 See Eisenhart (1926); York, Jr. (1971); see also Problem 21.22 in Misner et al. (1973). Note that the Bach tensor is a

tensor density rather than a tensor; see Appendix A.3.
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Bowen - York initial data for binary black holes is 

(relatively) simple

Then:  

• Momentum constraint with analytic solutions: 

• Use linearity for binary black holes:
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located at
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implying that such a binary would reach the ISCO just before the two stars touch. We
have plotted this result in Figure 12.2 for identical stars of compaction m/R = 0.2, where
m = M/2 is the mass of the individual stars; we also show the combined effects of
relativistic corrections and tidal interactions in determining the ISCO. For compressible
stars λ is smaller than 3/2, so that in Newtonian gravitation these stars would merge before
they could encounter any ISCO. However, in general relativity, for identical irrotational
companions constructed with a moderately stiff equation of state, the entire equilibrium
sequence actually terminates at a finite separation prior to merger, at which point the stellar
density profiles form a cusp (see Chapter 15.3). Orbital decay beyond this point will then
trigger some tidal disruption prior to eventual merger (see Chapter 16).

After reaching the ISCO, the binary companions plunge and merge on an orbital time
scale. Depending on the nature and masses of the compact companions, their coalescence
leads to the formation of a merged object, or remnant, that may either be a rotating neutron
star or a black hole. During the final ringdown phase of the binary evolution this remnant
settles down into an equilibrium state. In the case of a hypermassive neutron star, secular
effects (viscosity or magnetic fields) can lead later to delayed collapse to a black hole (see
Chapters 14 and 16.)

During the inspiral phase, up to reasonably small binary separations, the binary can
be modeled very accurately by post-Newtonian expansions (see Appendix D). The ring-
down phase can be described very well by strong-field perturbative techniques. Numerical
relativity simulations are needed to connect these two regimes, beginning with the late
inspiral phase, and continuing through the dynamical plunge and merger phase. Numerical
relativity is also required to treat delayed collapse. Not surprisingly, considerable effort in
numerical relativity has focused on compact binaries in close quasicircular orbits. In the
rest of this chapter we will construct initial data for binary black holes in such orbits.

12.2 The conformal transverse-traceless approach: Bowen–York

12.2.1 Solving the momentum constraint

In the transverse-traceless approach we assume both conformal flatness, so that γ̄i j = ηi j ,
and maximal slicing, so that K = 0. The momentum constraint (12.4) then reduces to

D̄ j Āi j = 0, (12.37)

where D̄ j is now a flat-space covariant derivative. In Cartesian coordinates this operator
reduces to the partial derivative ∂ j . Our assumptions have simplified the momentum
constraint to the point where the decomposition of Āi j into a transverse and a longitudinal
part (see equation 3.48) is somewhat pointless, since both of them now have vanishing
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Given that the momentum constraint (12.37) is linear, we can construct a binary black
hole solution by superposition of single solutions

Āi j = Āi j
C1P1

+ Āi j
C1S1

+ Āi j
C2P2

+ Āi j
C2S2

. (12.44)

This completes an analytic solution of the momentum constraint describing two black
holes with arbitrary momenta and spins.

Exercise 12.6 Show that9

P = P1 + P2 (12.45)

is the total linear momentum of the solution (12.44) and

J = C1 × P1 + C2 × P2 + S1 + S2 (12.46)

its total angular momentum about the origin of the coordinate system.

For a binary system, S1 and S2 can be associated with the spin of the individual black
holes only in the limit of infinite binary separation, but we nevertheless take the liberty to
define the orbital angular momentum L as

L ≡ J − S1 − S2. (12.47)

12.2.2 Solving the Hamiltonian constraint

With a solution to the momentum constraint at hand we can now proceed to solve the
Hamiltonian constraint (12.3). Under the assumptions of conformal flatness and maximal
slicing, this equation reduces to

D̄2ψ = −1
8
ψ−7 Āi j Āi j . (12.48)

We have reduced the construction of binary black hole initial data to solving a single
nonlinear elliptic equation. On the right hand side, the term Āi j Āi j can be computed
analytically from (12.44). Unfortunately this term diverges at the black holes’ centers Ci .
Dealing with this singularity requires some extra care.

Two different approaches have been adopted in the literature to solve this problem; they
differ in the topology of the resulting solution. Recall our discussion in Chapter 3.1, which
demonstrated that initial data sets representing multiple black holes are not unique. As a
starting point, we can look for generalizations of the time-symmetric solution

ψ = 1 + M1

rC1

+ M2

rC2

, (12.49)

9 To represent the momenta Pi and spins Si of these solutions it is convenient to use bold-face notation P and S instead
of index notation.
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C1P1

+ Āi j
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starting point, we can look for generalizations of the time-symmetric solution

ψ = 1 + M1

rC1

+ M2

rC2

, (12.49)

9 To represent the momenta Pi and spins Si of these solutions it is convenient to use bold-face notation P and S instead
of index notation.

One equation to solve numerically:

Assume:  

• Conformal flatness: 
• Maximal slicing:
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located at

rISCO = (24λ)1/5 R ≈ 2.05R, (12.36)

implying that such a binary would reach the ISCO just before the two stars touch. We
have plotted this result in Figure 12.2 for identical stars of compaction m/R = 0.2, where
m = M/2 is the mass of the individual stars; we also show the combined effects of
relativistic corrections and tidal interactions in determining the ISCO. For compressible
stars λ is smaller than 3/2, so that in Newtonian gravitation these stars would merge before
they could encounter any ISCO. However, in general relativity, for identical irrotational
companions constructed with a moderately stiff equation of state, the entire equilibrium
sequence actually terminates at a finite separation prior to merger, at which point the stellar
density profiles form a cusp (see Chapter 15.3). Orbital decay beyond this point will then
trigger some tidal disruption prior to eventual merger (see Chapter 16).

After reaching the ISCO, the binary companions plunge and merge on an orbital time
scale. Depending on the nature and masses of the compact companions, their coalescence
leads to the formation of a merged object, or remnant, that may either be a rotating neutron
star or a black hole. During the final ringdown phase of the binary evolution this remnant
settles down into an equilibrium state. In the case of a hypermassive neutron star, secular
effects (viscosity or magnetic fields) can lead later to delayed collapse to a black hole (see
Chapters 14 and 16.)

During the inspiral phase, up to reasonably small binary separations, the binary can
be modeled very accurately by post-Newtonian expansions (see Appendix D). The ring-
down phase can be described very well by strong-field perturbative techniques. Numerical
relativity simulations are needed to connect these two regimes, beginning with the late
inspiral phase, and continuing through the dynamical plunge and merger phase. Numerical
relativity is also required to treat delayed collapse. Not surprisingly, considerable effort in
numerical relativity has focused on compact binaries in close quasicircular orbits. In the
rest of this chapter we will construct initial data for binary black holes in such orbits.

12.2 The conformal transverse-traceless approach: Bowen–York

12.2.1 Solving the momentum constraint

In the transverse-traceless approach we assume both conformal flatness, so that γ̄i j = ηi j ,
and maximal slicing, so that K = 0. The momentum constraint (12.4) then reduces to

D̄ j Āi j = 0, (12.37)

where D̄ j is now a flat-space covariant derivative. In Cartesian coordinates this operator
reduces to the partial derivative ∂ j . Our assumptions have simplified the momentum
constraint to the point where the decomposition of Āi j into a transverse and a longitudinal
part (see equation 3.48) is somewhat pointless, since both of them now have vanishing
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implement these equations, at least in three spatial dimensions, turn out to be unstable.1 The
failure of these equations can be understood in terms of their mathematical properties, as we
will briefly discuss in Section 11.1. Following this summary, we will discuss reformulations
of the evolution equations that avoid these problems and have proven more robust and
successful numerically. But first, in order to model the shortcomings of the standard
evolution equations of Chapter 2 in a simple way and to obtain some guidance on how
to fix them, we shall return to Maxwell’s equations in Section 11.2. Fortified by the
insight provided by this example, we will then present several different reformulations
of the 3 + 1 evolution equations that have proven very successful in many numerical
simulations.

11.1 Notions of hyperbolicity

Recall from Chapter 6 that we can cast a hyperbolic partial differential equation – for
example the simple wave equation (6.3) – in the first-order form

∂t u + A · ∂x u = S, (11.1)

where u is a solution vector, S = S(u) is a source vector, and where we have called the
matrix A the velocity matrix (see equation 6.7). Here we have assumed that the solution
depends on t and x only; in more than one spatial dimension we may generalize equation
(11.1) to read

∂t u + Ai · ∂i u = S. (11.2)

If the solution vector u has n components, then each matrix Ai is an n × n matrix. For the
purposes of this section we may ignore the source term and set S = 0.

We call a problem well-posed if we can define some norm ∥ . . . ∥ so that the norm of the
solution vector satisfies2

∥u(t, xi )∥ ≤ keαt∥u(0, xi )∥ (11.3)

for all times t ≥ 0. Here k and α are two constants that are independent of the initial data
u(0, xi ). Stated differently, solutions of a well-posed problem cannot increase more rapidly
than exponentially. Clearly, this is a very desirable property, but it is not guaranteed for all
hyperbolic systems.

As it turns out, there exist different types of hyperbolicity, and only for some of these
types are the equations well-posed. To analyze these hyperbolicity properties, we consider
an arbitrary unit vector ni and construct the matrix P = Ai ni , which is sometimes referred

1 The high degree of spatial symmetry in spherical symmetry and even axisymmetry allows for a number of different
strategies to obtain stable evolutions, including fully or partially constrained evolution, the use of special coordinate
systems, or the introduction of new variables.

2 Much of this section follows the arguments of Alcubierre (2008a); see also Kreiss and Lorenz (1989) and Alcubierre
(2008b).
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We can identify the troublesome terms
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If we identify the vector potential Ai with the spatial metric γi j and the electric field Ei

with the extrinsic curvature Ki j , we see that the right-hand sides of both equations (11.4)
and (11.7) contain a field variable and a spatial derivative of a gauge variable, while the
right-hand sides of both equations (11.5) and (11.8) involve matter sources as well as
second spatial derivatives of the second field variable. In equation (11.8) these second
derivatives are hidden in the Ricci tensor Ri j , which we can write, for example, as

Ri j = 1
2
γ kl

(
∂l∂iγk j + ∂ j∂kγil − ∂ j∂iγkl − ∂l∂kγi j

)
+ γ kl

(
#m

il #mkj − #m
i j #mkl

)
. (11.9)

We can now exploit these similarities by focusing on the simpler Maxwell system of
equations to identify some of the computational shortcomings of these forms of the
evolution equations.

We first note that equations (11.4) and (11.5) almost can be combined to yield a wave
equation, which would make the system symmetric hyperbolic. To see this, take a time
derivative of equation (11.4) and insert equation (11.5) to form a single equation for the
vector potential Ai ,

−∂2
t Ai + D j D j Ai − Di D j A j = Di∂t$ − 4π ji . (11.10)

On the left-hand side, the second time derivative combines with the Laplace operator
D j D j Ai to form a wave operator (d’Alembertian). Equations (11.4) and (11.5) would then
constitute a wave equation for the components Ai if it weren’t for the mixed derivative
term Di D j A j .

In general relativity the situation is very similar. The Ricci tensor Ri j on the right hand
side of equation (11.8) contains three mixed derivative terms in addition to the term with a
Laplace-like operator acting on γi j , i.e., γ kl∂l∂kγi j . Without these mixed derivative terms
the standard ADM equations could be written as a set of wave equations for the components
of the spatial metric, which would make them symmetric hyperbolic. As we discussed in
Section 11.1 we would like to evolve a system that is well-posed, but the presence of these
additional terms may spoil this property.

These considerations suggest that it would be desirable to eliminate the mixed derivative
terms. In electrodynamics, three different approaches can be taken to eliminate the Di D j A j

term: one can make a special gauge choice; one can bring Maxwell’s equations into a first-
order symmetric hyperbolic form; or, one can introduce an auxiliary variable. In the
remainder of this section we will discuss briefly each one of these three strategies.

11.2.1 Generalized Coulomb gauge

The most straightforward approach to eliminating the undesirable terms is to choose a
gauge so that the term Di D j A j disappears. Define the quantity

# ≡ Di Ai . (11.11)

Strongly hyperbolic without this

Maxwell:

d’Alembertian

Einstein:
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To eliminate the offending term, we may then set

! = 0. (11.12)

This choice is the familiar Coulomb gauge condition.

Exercise 11.1 Show that in the Coulomb gauge the gauge potential " satisfies
Poisson’s elliptic equation

Di Di" = −4πρe. (11.13)

In general relativity, an analogous approach can be taken by choosing harmonic coor-
dinates, which bring the equations into the form of a wave equation.10 (The reader may
wish to review Chapter 4.3, and, especially, exercise 4.10.) We will return to this strategy
in Section 11.3 below.

This approach has disadvantages, too. As exercise 11.1 demonstrates, the choice (11.12)
forces us to satisfy a constraint that may be inconvenient to solve. In general relativity, the
analogous harmonic gauge condition, (4)!a = 0, similarly imposes a coordinate choice –
the lapse and shift now have to satisfy equations (4.44) and (4.45). These coordinates may
not be well-suited to the problem at hand, and may lead to coordinate singularities. One
way to regain coordinate freedom is not to set ! = 0 as in equation (11.12), but instead to
set ! equal to some yet-to-be-chosen gauge source function H (t, xi ),

! = H (t, xi ). (11.14)

Retracing the steps in exercise 11.1 we could find out how a particular choice of H affects
the gauge potential ". Similarly, in general relativity we can relax the harmonic gauge
condition with the help of a 4-dimensional gauge source function, (4)!a = H a(t, xi ), as we
will see in Section 11.3. This approach is commonly referred to as “generalized harmonic
coordinates”, and, in analogy, we could refer to the condition (11.14) imposed on ! as the
“generalized Coulomb gauge”.

11.2.2 First-order hyperbolic formulations

An alternative, gauge-covariant approach to bringing Maxwell’s equations into a symmetric
hyperbolic form is to take a time derivative of equation (11.5) instead of equation (11.4),
which then yields

∂2
t Ei = Di D j (−E j − D j") − D j D j (−Ei − Di") − 4π∂t ji . (11.15)

Using the constraint (11.6) we can eliminate the first term and find a wave equation for Ei ,

−∂2
t Ei + D j D j Ei = 4π (∂t ji + Diρe), (11.16)

10 This property was first realized by De Donder (1921) and Lanczos (1922). Many of the early hyperbolic formulations
of Einstein’s equations were based on this gauge choice, e.g., Choquet-Bruhat (1952, 1962); Fischer and Marsden
(1972).

11.2 Recasting Maxwell’s equations 379

If we identify the vector potential Ai with the spatial metric γi j and the electric field Ei

with the extrinsic curvature Ki j , we see that the right-hand sides of both equations (11.4)
and (11.7) contain a field variable and a spatial derivative of a gauge variable, while the
right-hand sides of both equations (11.5) and (11.8) involve matter sources as well as
second spatial derivatives of the second field variable. In equation (11.8) these second
derivatives are hidden in the Ricci tensor Ri j , which we can write, for example, as

Ri j = 1
2
γ kl

(
∂l∂iγk j + ∂ j∂kγil − ∂ j∂iγkl − ∂l∂kγi j

)
+ γ kl

(
#m

il #mkj − #m
i j #mkl

)
. (11.9)

We can now exploit these similarities by focusing on the simpler Maxwell system of
equations to identify some of the computational shortcomings of these forms of the
evolution equations.

We first note that equations (11.4) and (11.5) almost can be combined to yield a wave
equation, which would make the system symmetric hyperbolic. To see this, take a time
derivative of equation (11.4) and insert equation (11.5) to form a single equation for the
vector potential Ai ,

−∂2
t Ai + D j D j Ai − Di D j A j = Di∂t$ − 4π ji . (11.10)

On the left-hand side, the second time derivative combines with the Laplace operator
D j D j Ai to form a wave operator (d’Alembertian). Equations (11.4) and (11.5) would then
constitute a wave equation for the components Ai if it weren’t for the mixed derivative
term Di D j A j .

In general relativity the situation is very similar. The Ricci tensor Ri j on the right hand
side of equation (11.8) contains three mixed derivative terms in addition to the term with a
Laplace-like operator acting on γi j , i.e., γ kl∂l∂kγi j . Without these mixed derivative terms
the standard ADM equations could be written as a set of wave equations for the components
of the spatial metric, which would make them symmetric hyperbolic. As we discussed in
Section 11.1 we would like to evolve a system that is well-posed, but the presence of these
additional terms may spoil this property.

These considerations suggest that it would be desirable to eliminate the mixed derivative
terms. In electrodynamics, three different approaches can be taken to eliminate the Di D j A j

term: one can make a special gauge choice; one can bring Maxwell’s equations into a first-
order symmetric hyperbolic form; or, one can introduce an auxiliary variable. In the
remainder of this section we will discuss briefly each one of these three strategies.

11.2.1 Generalized Coulomb gauge

The most straightforward approach to eliminating the undesirable terms is to choose a
gauge so that the term Di D j A j disappears. Define the quantity

# ≡ Di Ai . (11.11)
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If we identify the vector potential Ai with the spatial metric γi j and the electric field Ei

with the extrinsic curvature Ki j , we see that the right-hand sides of both equations (11.4)
and (11.7) contain a field variable and a spatial derivative of a gauge variable, while the
right-hand sides of both equations (11.5) and (11.8) involve matter sources as well as
second spatial derivatives of the second field variable. In equation (11.8) these second
derivatives are hidden in the Ricci tensor Ri j , which we can write, for example, as
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2
γ kl

(
∂l∂iγk j + ∂ j∂kγil − ∂ j∂iγkl − ∂l∂kγi j

)
+ γ kl

(
#m

il #mkj − #m
i j #mkl

)
. (11.9)

We can now exploit these similarities by focusing on the simpler Maxwell system of
equations to identify some of the computational shortcomings of these forms of the
evolution equations.

We first note that equations (11.4) and (11.5) almost can be combined to yield a wave
equation, which would make the system symmetric hyperbolic. To see this, take a time
derivative of equation (11.4) and insert equation (11.5) to form a single equation for the
vector potential Ai ,
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constitute a wave equation for the components Ai if it weren’t for the mixed derivative
term Di D j A j .

In general relativity the situation is very similar. The Ricci tensor Ri j on the right hand
side of equation (11.8) contains three mixed derivative terms in addition to the term with a
Laplace-like operator acting on γi j , i.e., γ kl∂l∂kγi j . Without these mixed derivative terms
the standard ADM equations could be written as a set of wave equations for the components
of the spatial metric, which would make them symmetric hyperbolic. As we discussed in
Section 11.1 we would like to evolve a system that is well-posed, but the presence of these
additional terms may spoil this property.

These considerations suggest that it would be desirable to eliminate the mixed derivative
terms. In electrodynamics, three different approaches can be taken to eliminate the Di D j A j
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order symmetric hyperbolic form; or, one can introduce an auxiliary variable. In the
remainder of this section we will discuss briefly each one of these three strategies.
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To eliminate the offending term, we may then set

! = 0. (11.12)

This choice is the familiar Coulomb gauge condition.

Exercise 11.1 Show that in the Coulomb gauge the gauge potential " satisfies
Poisson’s elliptic equation

Di Di" = −4πρe. (11.13)

In general relativity, an analogous approach can be taken by choosing harmonic coor-
dinates, which bring the equations into the form of a wave equation.10 (The reader may
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which then yields

∂2
t Ei = Di D j (−E j − D j") − D j D j (−Ei − Di") − 4π∂t ji . (11.15)
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−∂2
t Ei + D j D j Ei = 4π (∂t ji + Diρe), (11.16)

10 This property was first realized by De Donder (1921) and Lanczos (1922). Many of the early hyperbolic formulations
of Einstein’s equations were based on this gauge choice, e.g., Choquet-Bruhat (1952, 1962); Fischer and Marsden
(1972).
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in the form (4) Rab = 8π (Tab − (1/2)gabT ). Substituting the Ricci tensor as expressed by
equation (4.46) yields

1
2 gcd∂d∂cgab − gc(a∂b)

(4)#c − (4)#c (4)#(ab)c − 2ged (4)#c
e(a

(4)#b)cd − gcd (4)#e
ad

(4)#ecb

= −8π
(

Tab − 1
2 gabT

)
, (11.20)

where we have reintroduced the definition (4.40),

(4)#a ≡ gbc(4)#a
bc = − 1

|g|1/2

∂

∂xb

(
|g|1/2gab

)
= gbc∇b∇cxa (11.21)

(see exercises 4.8 and 4.10 and the discussion that follows these exercises). The (4)#a

are contractions of Christoffel symbols, and therefore do not transform like vectors under
coordinate transformations. We can now introduce a gauge by setting these quantities equal
to some given gauge source functions H a ,

(4)#a = H a(t, xi ). (11.22)

This approach follows very closely our electromagnetic example of Section 11.2.1, and
equation (11.22) is the direct analog of (11.14). Just like the choice (11.14) led to the
elimination of the “mixed derivatives” terms in Maxwell’s equations (11.10), inserting
equation (11.22) into Einstein’s equations (11.20) yields a nonlinear wave equation for the
spacetime metric gab.12 After some manipulations this equation can be brought into the
form13

gcd∂d∂cgab +2∂(agcd∂cgb)d + 2H(a,b) − 2Hd
(4)#d

ab

+ 2 (4)#c
bd

(4)#d
ac = −8π (2Tab − gabT ) .

(11.23)

Here we have lowered the indices of H a with the spacetime metric gab, Ha ≡ gab H b. For the
special choice H a = 0 we recover the harmonic coordinates of Chapter 4.3. More generally
we refer to this approach as “generalized harmonic coordinates”.14 This formalism was
adopted by Pretorius (2005a,b) in his simulations of binary black hole coalescence and
merger, which we will discuss in more detail in Chapter 13.

Identifying equations (11.21) and (11.22) imposes a new, 4-dimensional constraint

Ca ≡ H a − gbc (4)#a
bc = 0. (11.24)

Equation (11.23) can be integrated directly for the spacetime metric gab. To stabilize the
system, it is sometimes necessary to add linear combinations of the constraints (11.24)
to the evolution equations (11.23), i.e., it is necessary to add terms proportional to the

12 See Friedrich (1985); Garfinkle (2002). See also the related “Z4” formalism suggested by Bona et al. (2003).
13 See Pretorius (2005b).
14 This name is somewhat misleading, however, since it does not single out any particular family of coordinate systems.

Instead, any arbitrary coordinate system can be generated by (11.22) with a suitable choice of Ha .
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Here we have lowered the indices of H a with the spacetime metric gab, Ha ≡ gab H b. For the
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coordinate transformations. We can now introduce a gauge by setting these quantities equal
to some given gauge source functions H a ,

(4)#a = H a(t, xi ). (11.22)

This approach follows very closely our electromagnetic example of Section 11.2.1, and
equation (11.22) is the direct analog of (11.14). Just like the choice (11.14) led to the
elimination of the “mixed derivatives” terms in Maxwell’s equations (11.10), inserting
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Here we have lowered the indices of H a with the spacetime metric gab, Ha ≡ gab H b. For the
special choice H a = 0 we recover the harmonic coordinates of Chapter 4.3. More generally
we refer to this approach as “generalized harmonic coordinates”.14 This formalism was
adopted by Pretorius (2005a,b) in his simulations of binary black hole coalescence and
merger, which we will discuss in more detail in Chapter 13.

Identifying equations (11.21) and (11.22) imposes a new, 4-dimensional constraint
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bc = 0. (11.24)

Equation (11.23) can be integrated directly for the spacetime metric gab. To stabilize the
system, it is sometimes necessary to add linear combinations of the constraints (11.24)
to the evolution equations (11.23), i.e., it is necessary to add terms proportional to the
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Here we have lowered the indices of H a with the spacetime metric gab, Ha ≡ gab H b. For the
special choice H a = 0 we recover the harmonic coordinates of Chapter 4.3. More generally
we refer to this approach as “generalized harmonic coordinates”.14 This formalism was
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Box 11.1 The BSSN equations

In the BSSN formulation of the 3 + 1 equations the spatial metric γi j is decomposed into a
conformally related metric γ̄i j with determinant γ̄ = 1 (assuming Cartesian coordinates) and a
conformal factor eφ ,

γi j = e4φγ̄i j . (11.46)

We also decompose the extrinsic curvature into its trace and traceless parts and conformally
transform the traceless part as we do the metric,

Ki j = e4φ Ãi j + 1
3
γi j K . (11.47)

In terms of these variables the Hamiltonian constraint (2.132) becomes

0 = H = γ̄ i j D̄i D̄ j eφ − eφ

8
R̄ + e5φ

8
Ãi j Ãi j − e5φ

12
K 2 + 2πe5φρ, (11.48)

while the momentum constraint (2.133) becomes

0 = Mi = D̄ j (e6φ Ã ji ) − 2
3

e6φ D̄i K − 8πe6φ Si . (11.49)

The evolution equation (2.136) for γi j splits into two equations,

∂tφ = −1
6
αK + β i∂iφ + 1

6
∂iβ

i , (11.50)

∂t γ̄i j = −2α Ãi j + βk∂k γ̄i j + γ̄ik∂ jβ
k + γ̄k j∂iβ

k − 2
3
γ̄i j∂kβ

k, (11.51)

while the evolution equation (2.135) for Ki j splits into the two equations

∂t K = −γ i j D j Diα + α( Ãi j Ãi j + 1
3

K 2) + 4πα(ρ + S) + β i∂i K , (11.52)

∂t Ãi j = e−4φ
(
−(Di D jα)T F + α(RT F

i j − 8π ST F
i j )

)
+ α(K Ãi j − 2 Ãil Ãl

j )

+βk∂k Ãi j + Ãik∂ jβ
k + Ãk j∂iβ

k − 2
3

Ãi j∂kβ
k .

(11.53)

In the last equation the superscript T F denotes the trace-free part of a tensor, e.g., RT F
i j =

Ri j − γi j R/3. We also split the Ricci tensor into Ri j = R̄i j + Rφ
i j , where Rφ

i j can be found by
inserting φ = ln ψ into equation (3.10). We express R̄i j in terms of the conformal connection
functions )̄i ≡ γ̄ jk)̄i

jk = −∂ j γ̄
i j , which yields

R̄i j = −1
2
γ̄ lm∂m∂l γ̄i j + γ̄k(i∂ j))̄

k + )̄k)̄(i j)k + γ̄ lm
(
2)̄k

l(i )̄ j)km + )̄k
im)̄kl j

)
. (11.54)

The )̄i are now treated as independent functions that satisfy their own evolution equations,

∂t )̄
i = −2 Ãi j∂ jα + 2α

(
)̄i

jk Ãk j − 2
3
γ̄ i j∂ j K − 8πγ̄ i j S j + 6 Ãi j∂ jφ

)

+β j∂ j )̄
i − )̄ j∂ jβ

i + 2
3
)̄i∂ jβ

j + 1
3
γ̄ li∂l∂ jβ

j + γ̄ l j∂ j∂lβ
i .

(11.55)
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Ãi j Ãi j − e5φ

12
K 2 + 2πe5φρ, (11.48)

while the momentum constraint (2.133) becomes

0 = Mi = D̄ j (e6φ Ã ji ) − 2
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)

+β j∂ j )̄
i − )̄ j∂ jβ

i + 2
3
)̄i∂ jβ

j + 1
3
γ̄ li∂l∂ jβ

j + γ̄ l j∂ j∂lβ
i .

(11.55)

390 Chapter 11 Recasting the evolution equations

Box 11.1 The BSSN equations

In the BSSN formulation of the 3 + 1 equations the spatial metric γi j is decomposed into a
conformally related metric γ̄i j with determinant γ̄ = 1 (assuming Cartesian coordinates) and a
conformal factor eφ ,

γi j = e4φγ̄i j . (11.46)

We also decompose the extrinsic curvature into its trace and traceless parts and conformally
transform the traceless part as we do the metric,

Ki j = e4φ Ãi j + 1
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i = −2 Ãi j∂ jα + 2α

(
)̄i
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After wave extraction, we build a correspondence
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The tools we use



The Einstein Toolkit is free, open source, and actively 

developed

einsteintoolkit.org

• 113 Members 

• 69 Groups



There are tutorials for new users

einsteintoolkit.org

• You need a cluster 

• Binary black holes 

• Relativistic 

magnetohydrodynamics 

• ~5000 cpu hrs / run



SimulationTools is a free and open source package for 

analyzing simulation data in Mathematica

simulationtools.org

• The simulation is only half 

the effort  

➡ Post processing! 

• Ian Hinder & Barry Wardell



You can simulate the GW150914 event yourself!

einsteintoolkit.org/about/gallery/gw150914/

• Barry Wardell &    
Ian Hinder 

• Parameter files for 
simulation 

• 16,108 cpu hrs 

• Post processing 
scripts



You can simulate the GW150914 event yourself!

Trajectories

Horizons

Waveform

Common 
horizon



You can simulate the GW150914 event yourself!



These were some of the main points

ANNALS OF PHYSICS: f8, 304-331 (1964) 

The Two-Body Problem in Geometrodynamics 

SUSAN G. HAHN 

International Business Machines Corporation, New York, New York 

AND 

RICHARD W. LINDQUIST 

Adelphi University, Garden City, New York 

The problem of two interacting masses is investigated within the framework 
of geometrodynamics. It is assumed that the space-time continuum is free of 
all real sources of mass or charge; particles are identified with multiply con- 
nected regions of empty space. Particular attention is focused on an asymp- 
totically flat space containing a “handle” or “wormhole.” When the two 
“mouths” of the wormhole are well separated, they seem to appear as two cen- 
ters of gravitational attraction of equal mass. To simplify the problem, it is 
assumed that the metric is invariant under rotations about the axis of sym- 
metry, and symmetric with respect to the time t = 0 of maximum separation 
of the two mouths. Analytic initial value data for this case have been ob- 
tained by Misner; these contain two arbitrary parameters, which are uniquely 
determined when the mass of the two mouths and their initial separation have 
been specified. We treat a particular case in which the ratio of mass to initial 
separation is approximately one-half. To determine a unique solution of the 
remaining (dynamic) field equations, the coordinate conditions go- = -& are 
imposed; then the set of second order equations is transformed into a quasi- 
linear first order system and the difference scheme of Friedrichs used to ob- 
tain a numerical solution. Its behavior agrees qualitatively with that of the 
one-body problem, and can be interpreted as a mutual attraction and pinching- 
off of the two mouths of the wormhole. 

I. INTRODUCTION 

Wheeler (1, 2) has used the term “geometrodynamics” to characterize those 
solutions of the field equations for gravitation and electromagnetism’ 

41 = R,v - ?4 g& = 2(F,,FP - Pi gj,.F,sF=B) (l.la) 

FPu;v = 0 (l.lb) 

1 Throughout this paper Greek subscripts and superscripts range from 0 to 3 and Latin 
ones from 1 to 3. Also, units are chosen so that G (universal gravitation constant) = c = 1. 
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