Numerical relativity: (Almost) all you need to know

Binary black holes come in a few different varieties

This is a video simulating the second detection, GW151226

$$
\begin{array}{ll}
M_{1}=14.2 \mathrm{M}_{\odot} & \mathrm{M}_{2}=7.5 \mathrm{M}_{\odot} \\
M_{\text {Final }}=20.8 \mathrm{M}_{\odot} & \mathrm{M}_{\mathrm{GW}}=1 \mathrm{M}_{\odot}
\end{array}
$$

- Simulation: Simulating eXtreme Spacetime project

Outline

History and formalism

Evolution of field equations

Initial data

Wave extraction

The tools we use

There is a long history of successes and failures in numerical relativity

NUMERICAL RELATIVITY

Thomas W. Baumgarte Stuart L. Shapiro

Introduction to 3+1 Numerical Relativity

```
MIGUEL ALCUBIERRE
```


[^0]ANNALS OF PHYSICS: 29, 304-331 (1964)

The Two-Body Problem in Geometrodynamics
Susan G. Hahn
International Business Machines Corporation, New York, New York

AND
Richard W. Lindquist
Adelphi University, Garden City, New York

In summary, the numerical solution of the Einstein field equations presents no insurmountable difficulties. Much still remains to be done, however, in the investigation both of stable difference schemes (a proof of stability being one of the outstanding unsolved problems) and of coordinate conditions that are well suited to numerical work. The practical impossibility of carrying the numerical solution sufficiently far into the future limits the conclusions which can be drawn about the dynamical behavior of the wormhole system. Nevertheless, one sees evidence for a gravitational collapse of each mouth, analogous to that of the Schwarzschild metric, together with an interaction between the two of them. These two effects can only be properly disentangled through measurements in the asymptotic region; with the limited data at our disposal, such an analysis has not been possible.

The Maxwell equations serve as a guide

Maxwell's
equations

\partial_{t} E_{i}=\epsilon_{i j k} D^{j} B^{k}-4 \pi j_{i}\end{array} \partial_{t} B_{i}=-\epsilon_{i j k} D^{j} E^{k} \longleftarrow \Leftarrow $$
\begin{array}{c}2 \text { constraint } \\
\text { equations }\end{array}
$$\right.\)

\[

\]

The Maxwell equations can be written in a $3+1$ form

We foliate spacetime into spacelike slices

- Define surfaces of constant t: $\Omega_{a}=\nabla_{a} t \quad n_{a}=-\alpha \Omega_{a}$
- 3 spacelike basis vectors: $n_{a} e_{(i)}^{a}=0$
- Lie drag them to get them on next slice: $\mathcal{L}_{\mathfrak{t}} e_{(i)}^{a}=0$

- Fourth basis vector defined by $\mathrm{t}: t^{a}=e_{(0)}^{a}=(1,0,0,0)$
- Time vector has normal part and "shift": $t^{a}=\alpha n^{a}+\beta^{a}$
- Define spatial metric tensor: $\quad \gamma_{i j}=g_{i j} \quad \gamma_{a b}=g_{a b}+n_{a} n_{b} . \quad n^{a} \gamma_{a b}=0$
- Define spatial projection operator: $\gamma_{b}^{a}=g_{b}^{a}+n^{a} n_{b}$
- Define normal projection operator: $-n^{a} n_{b}$
- Decompose tensors into timelike and spacelike parts

The lapse and the shift can be defined with great freedom

$$
g_{a b}=\left(\begin{array}{cc}
-\alpha^{2}+\beta_{l} \beta^{l} & \beta_{i} \\
\beta_{j} & \gamma_{i j}
\end{array}\right)
$$

$$
t^{a}=\alpha n^{a}+\beta^{a}
$$

The vector t^{a} connects points with the same spatial coordinates on neighboring time slices.

Lapse: α Measures proper time along normal vector
Shift: β^{i} How coordinates "move" on the slice as time evolves

Why are you making things so complicated?

Geodesic slicing:

$$
\alpha=1, \quad \beta^{i}=0
$$

We now have Einstein's equations in a $3+1$ form

	Maxwell	Einstein: ADM Equations
Primary field	A_{i}	$\gamma_{i j}$
Secondary field	E_{i}	$K_{i j}$
Gauge variables	Φ	α and β^{i}
Matter sources	ρ_{e} and \dot{j}_{i}	ρ, S^{i} and $S_{i j}$
Evolution equations	$\begin{aligned} & \partial_{t} A_{i}=-E_{i}-D_{i} \Phi \\ & \partial_{t} E_{i}=-D^{j} D_{j} A_{i}+D_{i} D^{j} A_{j}-4 \pi j_{i} \end{aligned}$	$\begin{aligned} \partial_{t} \gamma_{i j}= & -2 \alpha K_{i j}+D_{i} \beta_{j}+D_{j} \beta_{i} \\ \partial_{t} K_{i j}= & \alpha\left(R_{i j}-2 K_{i k} K_{j}^{k}+K K_{i j}\right) \\ & -D_{i} D_{j} \alpha-8 \pi \alpha\left(S_{i j}-\frac{1}{2} \gamma_{i j}(S-\rho)\right) \\ & +\beta^{k} \partial_{k} K_{i j}+K_{i k} \partial_{j} \beta^{k}+K_{k j} \partial_{i} \beta^{k} \end{aligned}$
Constraint equations	$D_{i} E^{i}=4 \pi \rho_{e}$	$\begin{aligned} R+K^{2}-K_{i j} K^{i j} & =16 \pi \rho \\ D_{j}\left(K^{i j}-\gamma^{i j} K\right) & =8 \pi S^{i} \end{aligned}$

Curvature can be intrinsic or extrinsic

Intrinsic curvature:
$\gamma_{i j}$

Extrinsic curvature: $K_{i j}$

Relation:

$$
\partial_{t} \gamma_{i j}=-2 \alpha K_{i j}+D_{i} \beta_{j}+D_{j} \beta_{i}
$$

Outline

History and formalism

Evolution of field equations

Initial data

Wave extraction

The tools we use

Initial data

12 initial degrees of freedom $\gamma_{i j}$ spatial metric

- 4 constraint equations

$$
R+K^{2}-K_{i j} K^{i j}=16 \pi \rho
$$ $K_{i j}$ extrinsic curvature

$D_{j}\left(K^{i j}-\gamma^{i j} K\right)=8 \pi S^{i}$

- 4 coordinate conditions (lapse and shift) α β^{i}

4 remaining degrees of freedom $\longleftrightarrow 2$ dynamical GW polarizations

How do you specify those degrees of freedom?

Schwarzschild in isotropic coordinates is good for initial data and avoiding singularities

Schwarzschild coordinates:

Isotropic coordinates:

This generalizes to multiple black holes

Assume:

- Conformal flatness: $\quad \gamma_{i j}=\psi^{4} \eta_{i j}$
- Maximal slicing: $\quad K=0$.
- Time reversal invariance: $t \rightarrow-t$

Then:

- Momentum constraint $D_{j}\left(K^{i j}-\gamma^{i j} K\right)=8 \pi S^{i}$ satisfied trivially
- Hamiltonian constraint: $\bar{D}^{2} \psi=0$

This equation is linear! $\quad \psi=1+\sum_{\alpha} \frac{\mathcal{M}_{\alpha}}{2 r_{\alpha}} \quad \psi=1+\frac{\mathcal{M}_{1}}{2 r_{1}}+\frac{\mathcal{M}_{2}}{2 r_{2}}$

Misner, 1960

Bowen - York initial data for binary black holes is (relatively) simple

Assume:

- Conformal flatness:

$$
\begin{aligned}
\gamma_{i j} & =\psi^{4} \eta_{i j} \\
K & =0 .
\end{aligned}
$$

Then:

- Momentum constraint with analytic solutions: $\bar{D}_{j} \bar{A}^{i j}=0$
- Use linearity for binary black holes:

$$
\bar{A}^{i j}=\bar{A}_{\mathbf{C}_{1} \mathbf{P}_{1}}^{i j}+\bar{A}_{\mathbf{C}_{1} \mathbf{S}_{1}}^{i j}+\bar{A}_{\mathbf{C}_{2} \mathbf{P}_{2}}^{i j}+\bar{A}_{\mathbf{C}_{2} \mathbf{S}_{2}}^{i j}
$$

One equation to solve numerically: $\quad \bar{D}^{2} \psi=-\frac{1}{8} \psi^{-7} \bar{A}_{i j} \bar{A}^{i j}$

The initial data is mathematically correct, but astrophysically wrong

Does this assumption make sense? $\gamma_{i j}=\psi^{4} \eta_{i j}$ No!
But we have bigger problems ...

Fig: inside.hlrs.de/
Fig: spaceplace.nasa.gov/

Outline

History and formalism

Evolution of field equations

Initial data

Wave extraction

The tools we use

- Simulation: Simulating eXtreme Spacetime project
- Movie: Roland Haas, Max Planck Institute
- Real time: ~ 1 s

Hyperbolic equation in first order form:

Well-posedness:

$$
\begin{gathered}
\partial_{t} \mathbf{u}+\mathbf{A}^{i} \cdot \partial_{i} \mathbf{u}=\mathbf{S} \\
\left\|\mathbf{u}\left(t, x^{i}\right)\right\| \leq k e^{\alpha t}\left\|\mathbf{u}\left(0, x^{i}\right)\right\|
\end{gathered}
$$

Strongly hyperbolic: The matrix $\mathbf{A}^{i} n_{i}$ has real eigenvalues and a complete set of eigenvectors for all unit vectors n^{i}

Weakly hyperbolic: The matrix $\mathbf{A}^{i} n_{i}$ has real eigenvalues but an incomplete set of eigenvectors

Key point 1: \quad Strongly hyperbolic systems are well-posed

Key point 2:
The ADM equations are only weakly hyperbolic

Maxwell:

Einstein:

$$
R_{i j}=\frac{1}{2} \gamma^{k l}\left(\frac{\partial_{l} \partial_{i} \gamma_{k j}+\partial_{j} \partial_{k} \gamma_{i l}-\partial_{j} \partial_{i} \gamma_{k l}}{+\partial_{l} \partial_{k} \gamma_{i j}}\right)<\text { Laplacian }
$$

Standard E\&M:
Maxwell's equations

$$
-\partial_{t}^{2} A_{i}+D^{j} D_{j} A_{i}-D_{i} D^{j} A_{j}=D_{i} \partial_{t} \Phi-4 \pi j_{i}
$$

Coulomb gauge:

$$
D^{i} A_{i}=0 \longrightarrow-\partial_{t}^{2} A_{i}+D^{j} D_{j} A_{i}=D_{i} \partial_{t} \Phi-4 \pi j_{i}
$$

Alternatively:
Define gauge
source function:

$$
H\left(t, x^{i}\right) \equiv D^{i} A_{i}
$$

Generalized
Coulomb gauge: $\quad-\partial_{t}^{2} A_{i}+D_{j} D^{j} A_{i}-H\left(t, x^{i}\right)=D_{i} \partial_{t} \Phi-4 \pi j_{i}$

Einstein equations:

${ }^{(4)} R_{a b}=8 \pi\left(T_{a b}-(1 / 2) g_{a b} T\right)$

Define gauge source function:

$$
H^{a}\left(t, x^{i}\right) \equiv g^{b c(4)} \Gamma_{b c}^{a}
$$

Field equations in generalized harmonic coordinates:

$$
\begin{aligned}
g^{c d} \partial_{d} \partial_{c} g_{a b} & +2 \partial_{(a} g^{c d} \partial_{c} g_{b) d}+2 H_{(a, b)}-2 H_{d}{ }^{(4)} \Gamma_{a b}^{d} \\
& +2^{(4)} \Gamma_{b d}^{c}{ }^{(4)} \Gamma_{a c}^{d}=-8 \pi\left(2 T_{a b}-g_{a b} T\right)
\end{aligned}
$$

New constraint equation:

$$
\mathcal{C}^{a} \equiv H^{a}-g^{b c(4)} \Gamma_{b c}^{a}=0
$$

PRL 95, 121101 (2005) PHYSICAL REVIEW \quad LETTERS $\quad 16$ SEPTEMBER $_{\text {week }}^{\text {ending }}$

Evolution of Binary Black-Hole Spacetimes

Frans Pretorius ${ }^{1,2, *}$

${ }^{1}$ Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125, USA ${ }^{2}$ Department of Physics, University of Alberta, Edmonton, AB T6G 2 II Canada (Received 6 July 2005; published 14 September 2005)
We describe early success in the evolution of binary black-hole spacetimes with a numerical code based on a generalization of harmonic coordinates. Indications are that with sufficient resolution this scheme is capable of evolving binary systems for enough time to extract information about the orbit, merger, and gravitational waves emitted during the event. As an example we show results from the evolution of a binary composed of two equal mass, nonspinning black holes, through a single plunge orbit, merger, and ringdown. The resultant black hole is estimated to be a Kerr black hole with angular momentum parameter $a \approx 0.70$. At present, lack of resolution far from the binary prevents an accurate estimate of the energy emitted, though a rough calculation suggests on the order of 5% of the initial rest mass of the system is radiated as gravitational waves during the final orbit and ringdown.

The BSSN formalism is due to Shibata, Nakamura,

Baumgarte and Shapiro

Primary and secondary fields

$$
\gamma_{i j}=e^{4 \phi} \bar{\gamma}_{i j}
$$

$$
K_{i j}=e^{4 \phi} \tilde{A}_{i j}+\frac{1}{3} \gamma_{i j} K
$$

$$
\partial_{t} \phi=-\frac{1}{6} \alpha K+\beta^{i} \partial_{i} \phi+\frac{1}{6} \partial_{i} \beta^{i} \quad \partial_{t} \bar{\gamma}_{i j}=-2 \alpha \tilde{A}_{i j}+\beta^{k} \partial_{k} \bar{\gamma}_{i j}+\bar{\gamma}_{i k} \partial_{j} \beta^{k}+\bar{\gamma}_{k j} \partial_{i} \beta^{k}-\frac{2}{3} \bar{\gamma}_{i j} \partial_{k} \beta^{k}
$$

Evolution equations

$$
\begin{aligned}
\partial_{t} \tilde{A}_{i j}= & e^{-4 \phi}\left(-\left(D_{i} D_{j} \alpha\right)^{T F}+\alpha\left(R_{i j}^{T F}-8 \pi S_{i j}^{T F}\right)\right)+\alpha\left(K \tilde{A}_{i j}-2 \tilde{A}_{i l} \tilde{A}_{j}^{l}\right) \\
& +\beta^{k} \partial_{k} \tilde{A}_{i j}+\tilde{A}_{i k} \partial_{j} \beta^{k}+\tilde{A}_{k j} \partial_{i} \beta^{k}-\frac{2}{3} \tilde{A}_{i j} \partial_{k} \beta^{k} .
\end{aligned}
$$

$$
\partial_{t} K=-\gamma^{i j} D_{j} D_{i} \alpha+\alpha\left(\tilde{A}_{i j} \tilde{A}^{i j}+\frac{1}{3} K^{2}\right)+4 \pi \alpha(\rho+S)+\beta^{i} \partial_{i} K
$$

Constraint equations

$$
0=\mathcal{M}^{i}=\bar{D}_{j}\left(e^{6 \phi} \tilde{A}^{j i}\right)-\frac{2}{3} e^{6 \phi} \bar{D}^{i} K-8 \pi e^{6 \phi} S^{i} \quad 0=\mathcal{H}=\bar{\gamma}^{i j} \bar{D}_{i} \bar{D}_{j} e^{\phi}-\frac{e^{\phi}}{8} \bar{R}+\frac{e^{5 \phi}}{8} \tilde{A}_{i j} \tilde{A}^{i j}-\frac{e^{5 \phi}}{12} K^{2}+2 \pi e^{5 \phi} \rho
$$

The computational details get complicated fast

Adaptive mesh

Fig: Reisswig et al.

Black hole:
Region of spacetime that null geodesics cannot escape

Event horizon:
$2+1$ dim hypersurface defined by future directed null geodesics

Apparent horizon:
2 dim surface defined on slice by future directed null geodesics

Must be inside the event horizon

Outline

History and formalism

Evolution of field equations

Initial data

Wave extraction

The tools we use

Wave extraction requires a known, perturbed background

Wave zone: $g_{a b}=\eta_{a b}+h_{a b}^{\mathrm{rad}}$
Strong gravity, no approx.

Fig: jpl.nasa.gov/

After wave extraction, we build a correspondence

Do it 249,999 more times!

Outline

History and formalism

Evolution of field equations

Initial data

Wave extraction

The tools we use

The Einstein Toolkit is free, open source, and actively developed

einstein toolkit

Consortium Members

We are building a consortium of users and developers for the Einstein Toolkit. Users of the Einstein Tookit are encouraged to register on this page.

Current users include:

- Albert Einstein Institute
- lan Hinder
- Aristotle University of Thessaloniki - Nick Stergioulas
- Aveiro University
- Juan Carlos Degollado
- Carlos Herdeiro
- Belmont University
- Scott Hawley
- California Institute of Technology
- Christian D. Ott
- Peter Kalmus
- Philipp Mōsta
- David Radice
- Christian Reisswig
- Béla Szilagyi
- California State University East Bay - Ernest Schleicher
- Università di Catania
- Eloisa Bentivegna
- Chinese Academy of Sciences - Mew Bing Wan
- Christian-Albrechts-Universităt zu Kiel - Stetan Rühe
- Eastern New Mexico University - William L. Andersen
, Masarykova Univerzita (Masaryk University) - Radek Sevcik
, McNeese State University
- Megan Miler

Monash University

- Hayley Macpherson
, NASA Goddard Space Flight Center
- John Baker
- Bemard Kelly
, National Center for Supercomputing Applications
- Gabrielle Allen
- Roland Haas
- Edward Seidel
, Nicolaus Copernicus Astronomical Center (NCAC)
- Antonios Manousakis
- Bhupendra Prakash Mishra
- Bhupendra Prakash Mishra
, North Carolina State University
- Cody Simmons
- David Brown
, Northwestern University
- Carl Rodriguez

Osaka University

- Luca Baiotti
- Antonio Figura
- Michele Grasso
- Universitat de les Illes Balears - Sascha Husa
- Universidad de Los Andes
- Willians Barreto
- Universidad Michoacana
- Francisco Guzmán
- Universidad Nacional de Ingenieria (National University of Engineering) - Renato Tovar Landeo
- Universidad Nacional Autónoma de México - Jose Manuel Torres
- Universidade Federal do Espirito Santo - Carlos Lobo
- Universităt Bremen
- Oleg Korobkin
- University of California
- David Fideout
- University of Cambridge
- Pau Figueras
- Helvi Witek
- University College Dublin - Barry Wardell
- Università degli Studi di Firenze (University
einsteintoolkit.org

There are tutorials for new users

- You need a cluster
- Binary black holes
- Relativistic
magnetohydrodynamics
- ~5000 cpu hrs / run

SimulationTools is a free and open source package for analyzing simulation data in Mathematica

SimulationTools

Code
Downloa
Support Development
SimulationTools is a free software package for the analysis of numerical simulation data in Mathematica.

Features

- Programmatic Interface to Simulation Data
- Hide low-level simulation details
- Enhanced List and Array Data Types
- Useful for all simulation data, but explicitly supports the Cactus code
- Numerical Relativity and the Einstein Toolkit

Download

Please report any issues (bugs or feature requests) on the Issues Page.
SimulationTools was written by lan Hinder and Barry Wardell, with

contributions from Kyriaki Dionysopoulou and Aaryn Tonita. It is provided as free software under the GNU GPL (v3). Please see the Documentation Introduction for an example of how this software can be acknowledged and cited in publications.

- The simulation is only half the effort
- Post processing!
- Ian Hinder \& Barry Wardell

You can simulate the GW150914 event yourself!

- E_{T} Einstein Toolkit -Gallery: Bina \times

Welcome
About the Toolkil
Members
Maintainers
Governance
Capabilities
Gallery
Releases
Tools
Download
Community Services
Wiki
Blog
Support
Seminars
Issue Tracker
Documentation
Tutorial for New Users
Citing
User's Guide
Thorn Guide
Reference Manual
Wiki
Maintainer's Guide How to Contribute
Publications

einstein toolkit

Gallery: Binary black hole GW150914

On February 11, 2016, the LiGO collaboration announced that they had achieved the first ever direct detection of gravitational waves. The gravitational waves - which were detected by both LIGO detectors on September 14,2015 at $09: 51$ UTC - were generated over a bilion years ago by the merger of a binary black hole system. The announcement came along with the simultaneous publication of a peer-reviewed paper [Phys. Rev Lott. 116, 061102]; several other papers giving technical details; and a full release of the data from the detoction, which has been given the name GW150914.
The LIGO analysis found that the merger consisted of a $36+29$ solar mass binary black hole system, the remnant was a 62 solar mass black hole, and the remaining 3 solar masses were radiated as gravitational waves. This simulation shows how to use the Einstein Tookit to evolve the last 6 orbits and merger of a binary black hole system with parameters that match the GW150914 event. Along with the associated tutorials, if shows how to extract wavelorms and other physical properties from the simulated spacetime; how to visualise the 3D data generated by the simulation; and how to produce a numerical relativity waveform of the kind that may be used for the analysis of LIGO signals.
A subset of the simulation data - including everything required to follow the Visit and SimulationTools tulorials without having to run the simulation - is available for download below. The full simulation cutput additionally includes mutiple resolutions and considerable 2 D and 3 D output, and totals several terabytes in size; as such i w will be made available for download once a suitable distribution method has been found.
We ask that if you make use of the parameter fle or the example data, then please cite the GW150914 Einstein Tookit example and data, the Einstein Tookit, the Llama multi-block infrastructure, the Carpet mesh-refinement driver, the apparent horizon finder AHFinderDirect, the
TwoPunctures intial data code, QuasilocalMeasures, Cactus, and the McLachlan spacetime evolution code, the Kranc code generation package, TwoPunctures initial data code, Quasil
and the Simulation Factory.

Simulation details

Physical parameters

Initial separation D	10 M
Mass ratio $\mathrm{q}=\mathrm{m}_{1} / \mathrm{m}_{2}$	$36 / 29 \sim 1.24$
Spin $\mathrm{x}_{1}=\mathrm{a}_{1} / \mathrm{m}_{1}$	0.31
Spin $\mathrm{x}_{2}=\mathrm{a}_{2} / \mathrm{m}_{2}$	-0.46

Physical properties

Number of orbits	6
Time to merger	899 M
Mass of final BH	0.95 M
Spin of final BH (dimensionless)	0.69

- Barry Wardell \& Ian Hinder
- Parameter files for simulation
- 16,108 cpu hrs
- Post processing scripts

You can simulate the GW150914 event yourself!

Trajectories

Waveform

Horizons

Gravitational Waves from a Binary Black hole Merger

Smutation by
Dr. Barry Wardell
School of Mathematics and Statistics,
University College Dublin

These were some of the main points

[^0]: OXFORD SCIENCE PUBLICATIONS

