Sterile Neutrino Portals

Brian Batell University of Pittsburgh

Naturalness? Baryon Asymmetry?

Where is New Physics?

Squark-gluino-neutralino model, $m(\widetilde{\chi}_1^0) = 0$ GeV

ATLAS Preliminary

n combined

ed limit (±1 σ_{exp}

In this situation it is important to pursue a broad experimental program to test the Standard Model and search for new phenomena

Where is the New Physics?

Portals

$$(AS + \lambda S^2)H^{\dagger}H$$

Higgs Portal

Neutrino portal

$$-\frac{\kappa}{2}B_{\mu\nu}V^{\mu\nu}$$

Vector Portal

- Only three renormalizable portals in the Standard Model
- May play a role in addressing a variety of outstanding questions:
 - Naturalness, dark matter, baryogenesis, neutrino mass, ...

Neutrino Mass

Neutrino portal

- ullet Right handed neutrinos, N, are Standard Model gauge singlet fermions
- Deep connection to the SM structure in the UV ... e.g. SO(10) GUT?
- Or, alternatively, neutral fermions from a dark sector?
- May have deep connection to mysteries in cosmology
- ullet Strong hint that that this "portal" operates in nature via u oscillations

Seesaw

Minkowski; Yanagida; Mohapatra, Senjanovic; Gell-Mann, Ramond, Slansky; Schechter, Valle

$$yLHN + \frac{1}{2}MN^2 + \text{h.c.}$$

$$U \frac{g}{\sqrt{2}} W_{\mu}^{-} \ell^{\dagger} \bar{\sigma}^{\mu} N + \text{h.c.} + \dots$$

$$U \sim \frac{yv}{M} \sim \sqrt{\frac{m_{\nu}}{M}} \sim 10^{-5} \times \left(\frac{m_{\nu}}{0.05 \text{ eV}}\right)^{1/2} \left(\frac{\text{GeV}}{M}\right)^{1/2}$$

Experimental Landscape

Probing seesaw is challenging

Caveat: Yukawas, mixing angles can be larger

 \bullet In the νMSM , leptogenesis, sterile neutrino dark matter considerations may allow larger couplings

Asaka, Blanchet, Shaposhnikov

 The seesaw structure may be more intricate, and/or have additional approximate
 symmetries (e.g. inverse seesaw)
 Mohapatra, Valle

Sterile Neutrino Portals

It is possible that sterile neutrinos have additional exotic interactions beyond seesaw

- Vector portals: $B-L, L_{\mu}-L_{\tau}, ...$
- Scalar portal: $(AS + \lambda S^2)|H|^2 + (\lambda_N SN^2 + \text{h.c.})$
- Neutrino portal to dark matter: $yLHN + \lambda N\chi\phi + \text{h.c.}$

These portals can lead to novel phenomenology and potentially allow us to probe the seesaw motivated parameter space

[BB, Pospelov, Shuve '16]

Local B-L symmetry

Mohapatra, Marshak, ...

- Simple, well-motivated gauge extension of SM
- · Three sterile neutrinos required for anomaly cancellation
- Majorana mass arises from B-L symmetry breaking
- Simplified model:

$$\mathcal{L} \supset \frac{1}{2} M_V^2 V_\mu^2 - \frac{1}{2} M_N (N^2 + \text{h.c.})$$

$$+ g' V_\mu \left(\sum_{SM} Q_{B-L} \psi^\dagger \bar{\sigma}^\mu \psi + N^\dagger \bar{\sigma}^\mu N \right) + U \frac{g}{\sqrt{2}} \left(\mu_L^\dagger \bar{\sigma}^\mu W_\mu^- N + \text{h.c.} \right) + \dots$$

• Four parameters govern the physics: M_N, U, M_V, g'

Enhanced production of sterile neutrinos

Production via new vector boson

Decay via weak interactions

Sterile Neutrino Lifetime

For N lighter than W the decays of N are macroscopic

SHiP

SHiP sensitivity to B-L seesaw

Can probe seesaw region

LHC complementarity

vertex search

SHiP sensitivity to B-L seesaw

Higgs + Neutrino Portal

$$-\mathcal{L} \supset (AS + \lambda S^2)|H|^2 + (\lambda_N SN^2 + \text{h.c.}) + \dots$$

• Simple model, few parameters: $M_N, U, M_S, \theta, \lambda_N$

Mixing

$$h \quad \theta \quad S$$

Interactions

Singlet scalar decays and lifetime

Scalar portal parameter space

Limits can change if N couples to S

 Production controlled by Higgs-scalar mixing

• For $M_S>2M_N$, the decay $S\to NN$ is unsuppressed and dominates

• For $M_N < M_S < 2 M_N$, the channel $S \to N
u$ can be competitive

 Finally, sterile neutrinos decay via weak interactions

SHiP sensitivity (preliminary)

Can probe seesaw region

• Production of N controlled by active-sterile mixing angle

• N o S
u dominates over weak decays (2-body vs. 3-body)

$$N$$
 λ_N
 U
 ν

$$D \to N + X$$

$$N \to S \nu$$

$$S \to \mathrm{SM}\,\mathrm{SM}$$

• S decays in the "standard" way through Higgs mixing

$$N \to S\nu$$

$$S \to \mathrm{SM}\,\mathrm{SM}$$

↓ SM

 There is a sweet-spot for lifetime controlled by the Higgs-scalar mixing angle

SHiP sensitivity (preliminary)

Can probe seesaw region

LHC complementarity (preliminary)

Dedicated HL-LHC searches can probe seesaw with $\theta \sim 0.05$

Basic idea - N mediates interactions between dark matter and the SM

$$yLHN + \lambda N\chi\phi + \text{h.c.}$$

- Annihilation $\chi\chi\to NN$ is efficient allows thermally produced DM
 - Example in the class of "Secluded" DM models

[Pospelov, Ritz, Voloshin]

- Most model independent signatures are in indirect detection
 - Gamma-rays, antiprotons, CMB, ...
- Direct detection and accelerator probes are challenging, and more model dependent, but possible

Indirect Detection

Existing constraints probe masses below about 50 GeV

Accelerator probes

- If the dark sector is light, << 100 GeV, we can search for these particles in accelerator experiments
- Caution annihilation should be in the p-wave else there are stringent indirect constraints (see previous slide)
- LHC: exotic displaced Higgs decays (requires Higgs portal coupling)

$$h \to \phi \phi, \ \phi \to \chi N, \ N \to \text{visible}$$

SHiP: Production through meson decays, cascade decay to SM

$$B \to \phi \phi, \ \phi \to \chi N, \ N \to SM$$

$$D, B \rightarrow N_2 + X, N_2 \rightarrow \chi \phi, \phi \rightarrow N_1 \chi, N_1 \rightarrow SM$$

Outlook

- Neutrino masses are elegantly explained by new sterile neutrinos + seesaw
- However, it is challenging to probe seesaw experimentally
- Sterile neutrinos themselves may have "portals"
 - E.g. New gauge forces, scalar portals, dark sector interactions, ...
- Can probe seesaw region with new experiments + dedicated searches
- May mediate interactions with dark matter
- Provides additional motivation for long-lived particle searches at LHC and high intensity beam dump experiments like SHiP