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The Big Picture

• Mostly “Dark” Universe

Planck

• Known “visible” matter: ∼ 5% of total

• Unknown dark matter (DM): ∼ 27%

• Stable on cosmological time scales

• Feeble interactions with ordinary matter

• May be from a dark sector (no direct coupling to SM)

• Analogy with SM: dark sector may contain matter and forces
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Dark Forces

• Assume a “dark” sector U(1)d

• Minimal extension that captures key physics

• Mediated by vector boson Zd of mass mZd
coupling gd

• Interaction with SM: dim-4 operator (portal) via mixing

• mZd
<∼ 1 GeV has been invoked in various contexts

• DM interpretation of astrophysical data

Arkani-Hamed, Finkbeiner, Slatyer, Weiner, 2008

• Explaining 3.5σ gµ − 2 anomaly: ∆aµ = aexp
µ − aSM

µ = 288(80)× 10−11

Fayet, 2007 (direct coupling)

Pospelov, 2008 (kinetic mixing)

γ

Zd

µ µ

• Model building (Asymmetric DM models,. . . )
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Dark Photon

• Kinetic mixing: Zd of U(1)d and B of SM U(1)Y Holdom, 1986

Lgauge = −
1

4
BµνB

µν +
1

2

ε

cos θW
BµνZ

µν
d −

1

4
ZdµνZ

µν
d

Xµν = ∂µXν − ∂νXµ

• May be loop induced: ε ∼ egd/(4π)2 <∼ 10−3

• Remove cross term, via field redefinition

• Bµ → Bµ + ε
cos θW

Zdµ ; Z-Zd mass matrix digonalization

⇒ Zd couples to EM current: Lint = −e ε JµemZdµ Jµem =
∑

f Qf f̄γ
µf+· · ·

• Like a photon, but ε-suppressed couplings: “dark” photon

• Neutral current coupling suppressed by m2
Zd
/m2

Z � 1

• Add Z-Zd mass mixing → Zd as “dark” Z HD, Marciano, Lee, 2012

• “Dark” parity violation, rare meson and Higgs decays, . . .
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• Active experimental program to search for dark photon

Pioneering work by Bjorken, Essig, Schuster, Toro, 2009

• An early experimental target: gµ − 2 parameter space

Near Future Prospects
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S. Alekhin et al., arXiv:1504.04855 [hep-ph]

GeV-scale visibly decaying Zd basically excluded as gµ − 2 explanation

4



“Invisible” Dark Photon

• ∃ dark X with mX < mZd
/2 and Qdgd � eε ⇒ Br(Zd → XX̄) ' 1
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Recent 90% CL bound from Babar Collaboration, arXiv:1702.03327 [hep-ex]

GeV-scale“invisible” dark photon gµ − 2 solution ruled out
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Invisible Zd and DM Production

• Possible production and detection of DM beams in experiments

• p or e on fixed target⇒ production of boosted Zd (meson decays, bremsstrahlung,. . . )

• Zd beam decays into DM which can be detected via Zd exchange

• Event rate depends on αd ≡ g2
d/(4π) and ε2

Batell, Pospelov, Ritz, 2009 (p beam); Izaguirre, Krnjaic, Schuster, Toro, 2013 (e beam dump)

DM
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All Experiments (Kinetic Mixing + Elastically Coupled DM)

mZd
= 3mχ, gd = 0.5

J. Alexander et al., arXiv:1608.08632 [hep-ph]

S. Alekhin et al., arXiv:1504.04855 [hep-ph]

• (αd, ε2) typically assumed constant over q2 ranges of experiments

• This talk: For q2 � m2
Zd

, running of αd(q2) >∼ few × 0.1 (and ε2 ∝ αd) could be

significant, sensitive to dark sector spectrum below q2 HD, Marciano, 2015

See also Zhang, Li, Cao, Li, 2009; Sannino, Shoemaker, 2014 (non-Abelian gauge groups)
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Light DM and Running Couplings

• Correct DM thermal relic density (mZd
> mX)

αd ∼ 0.02w

(
10−3

ε

)2 ( mZd

100 MeV

)4
(

10 MeV

mX

)2

• w ∼ 10(1) for scalar (fermion) DM E.g., Izaguirre, Krnjaic, Schuster, Toro, 1411.1404

• Experiments can probe ε <∼ 10−4, corresponding to αd ∼ 1

• αd ∼ 1 ⊕ light DM with m2
X
<∼ q

2 ⇒ significant αd(q) running

• mX < mZd
/2 for invisible Zd while q2 >∼ m

2
Zd

can be typical

• Kinetic mixing naturally from loops: ε2 ∝ ααd ⇒ Running ε(q)

• Heavy F -loop → ε ; Light X-loop → running

γd γd γ

Fd,YXd

Jµ
d Jµ

em

q
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Numerical Analysis

• For αd ∼ 1, higher order effects important

• 2-loop analysis, with nF fermions and nS scalars

β(αd) =
α2
d

2π

[
4

3

(
nF +

nS
4

)
+
αd
π

(nF + nS)
]

• β(αd) ≡ µdαd/dµ

• Assume one light dark Higgs for mZd
6= 0 (nS ≥ 1) throughout

• Form of β(αd) suggests perturbative analysis unreliable for αd >∼ π

• Consider running above momentum transfer q0 >∼ mZd
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The solid (dashed) curves correspond to a fermion (scalar) dark matter state,

q0 = 0.1 GeV (mZd
<∼ q0). Left: one DM state; thin (thick) curves correspond to

αd(q0) = 0.6 (0.9). Right: two DM states with αd(q0) = 0.4. From H.D. and W.J.

Marciano, 1502.07383 [hep-ph]

• Beam-dump or fixed target experiments: range for q of O(GeV)

• Measurements sensitive to combined running of αd(q) and ε(q)

• Probe number and type (spin) of low lying (below q2) states
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Measurement of q2 Running

• General features of Zd interactions suggest an approach

• Definitive statements depend on experimental details

• Consider on-shell Zd production ∝ ε2(mZd
)

• Detection cross section σDM ∝ αd(q)ε2(q)

• Loop-induced kinetic mixing: ε2(q) ∝ αd(q) ⇒ σDM ∝ α2
d(q)

• At q >∼ mZd
, DM interactions with nucleus similar to QED

• Normalize σDM to electron (or muon) σEM ∝ 1/q2 (well-understood,

can be measured precisely)

R ≡ σDM/σEM ' αd ε2/α ' ξ α2
d (ξ ' constant)

Ignoring QED radiative corrections and mZd
6= 0 propagator effects
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(R ≡ σDM/σEM ' ξ α2
d; ξ ' constant)
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Running of R/ξ = α2
d with q, for one (solid) and two (dashed) light DM fermions

and αd(q0) = 0.25, q0 = 0.1 GeV, and mZd
<∼ q0; a dark Higgs boson is included for

both cases. From H.D. and W.J. Marciano, 1502.07383 [hep-ph]

• Running significant over q ∈ [0.1,4] GeV, the two cases quite distinct

• σDM falls like 1/q2, for q >∼ mZd
(modulo αd running)

• DM signal stronger for lower q2, while potential backgrounds from ν-nucleus
scattering more suppressed (optimal q range depends on experimental setup)
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Astrophysical Sources

• Similar consideration could apply to lower energy scales

Example:

• Emission of very light Zd from the Sun; mZd
∼ 10−6 eV

- Zd emission governed by ε2(mZd
) An, Pospelov, Pradler, 2013; Redondo, Raffelt, 2013

• DM detector as helioscope: q2 ∼ keV2

- Dark photon absorption by detector atoms An, Pospelov, Pradler, 2013

- Absorption (ionization) in helioscope governed by ε2(q)

• Event rate ∝ ε2(mZd
) ε2(q)

• q/mZd
∼ 109: running of ε2(q) ∝ αd(q) can be significant

mZd
= 10−6 eV, q = 103 eV, nF = 1, nS = 1 (mass ∼ mZd

), αd(mZd
) = 0.06

⇒ ε2(q)/ε2(mZd
) = αd(q)/αd(mZd

) ' 1.5
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Theoretic Implications of a Landau Pole

• Landau pole (αd � 1) at q = q∗ signals need for new physics

• Straightforward example: U(1)d → SU(N)d

• Expect ε = 0 at q = q∗ [e.g., no kinetic mixing for SU(N)d]

• ε generated below q∗ by loops of F with QdQY 6= 0 and mF < q∗

• Experimental constraints: mF >∼ 100 GeV, since QY (F ) 6= 0

• Implies that q∗ should be above the weak scale
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• Running of αd(q)

αd(q0) =
αd(q

∗)

1 + 2
3παd(q

∗)(nF + nS/4) ln(q∗/q0)

• For ln(q∗/q0)� 1, low energy αd(q0) insensitive to αd(q
∗) >∼ 1

αd(q0) ≈
3π

(2nF + nS/2) ln(q∗/q0)

• For q0 ≈ 100 MeV:

q∗ = 1TeV ⇒ αd(q0) <∼ 0.5/(nF + nS/4)

q∗ = MPlanck ' 1.2× 1019 GeV ⇒ αd(q0) <∼ 0.1/(nF + nS/4)

• Typically implies low energy upper bound αd(q0) <∼ 0.5 (q∗ >∼ 1 TeV)
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From arXiv:1702.02688 [hep-ex] (MiniBooNE Collaboration)

“Dark Matter Search in a Proton Beam Dump with MiniBooNE”
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Concluding Remarks

• Dark sector may include new forces

• U(1)d mediated by a sub-GeV Zd a simple and widely considered example

DM model building, gµ − 2, . . .

• DM may be light and couple to SM via the Zd − γ kinetic mixing ∝ ε

Typically requires αd >∼ 0.1

• Light DM may be probed at fixed target experiments

Production and detection mediated by Zd

• Running of αd and a loop-induced ε can be significant for q2 >∼ m
2
Zd

• Measuring αd(q) and ε(q) could probe the dark sector matter content

Typical detection rate ∝ αd(q)ε2(q) in dark beam experiments

• Theoretical considerations imply αd <∼ 0.5 at low energies (∼ mZd
<∼ 0.1 GeV)

Assuming 1 or more dark fermions of mass <∼ mZd

• Similar considerations could apply to lower mZd
scales (stellar physics)
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