Running in the Dark Sector

Hooman Davoudias

HET Group, Brookhaven National Laboratory

Based on: H.D. and W.J. Marciano, Phys. Rev. D **92**, no. 3, 035008 (2015) [arXiv:1502.07383 [hep-ph]]

CERN-EPFL-Korea Theory Institute "New Physics at the Intensity Frontier" February 20-March 3, 2017, CERN

The Big Picture

Mostly "Dark" Universe

• Known "visible" matter: $\sim 5\%$ of total

- Unknown dark matter (DM): $\sim 27\%$
- Stable on cosmological time scales
- Feeble interactions with ordinary matter
- May be from a dark sector (no direct coupling to SM)
- Analogy with SM: dark sector may contain matter and forces

Dark Forces

- Assume a "dark" sector $U(1)_d$
- Minimal extension that captures key physics
- ullet Mediated by vector boson Z_d of mass m_{Z_d} coupling g_d
- Interaction with SM: dim-4 operator (portal) via mixing
- $m_{Z_d} \lesssim 1$ GeV has been invoked in various contexts
- DM interpretation of astrophysical data

Arkani-Hamed, Finkbeiner, Slatyer, Weiner, 2008

• Explaining $3.5\sigma~g_{\mu}-2$ anomaly: $\Delta a_{\mu}=a_{\mu}^{\rm exp}-a_{\mu}^{\rm SM}=288(80)\times 10^{-11}$

Fayet, 2007 (direct coupling)
Pospelov, 2008 (kinetic mixing)

Dark Photon

ullet Kinetic mixing: Z_d of $U(1)_d$ and B of SM $U(1)_Y$ Holdom, 1986

$$\mathcal{L}_{ ext{gauge}} = -rac{1}{4} \mathrm{B}_{\mu
u} \mathrm{B}^{\mu
u} + rac{1}{2} rac{arepsilon}{\cos heta_{\mathrm{W}}} \mathrm{B}_{\mu
u} \mathrm{Z}_{\mathrm{d}}^{\mu
u} - rac{1}{4} \mathrm{Z}_{\mathrm{d}\mu
u} \mathrm{Z}_{\mathrm{d}}^{\mu
u}$$

$$X_{\mu\nu} = \partial_{\mu}X_{\nu} - \partial_{\nu}X_{\mu}$$

• May be loop induced: $\varepsilon \sim e g_d/(4\pi)^2 \lesssim 10^{-3}$

- Remove cross term, via field redefinition
 - $B_{\mu} \to B_{\mu} + \frac{\varepsilon}{\cos \theta_{\scriptscriptstyle W}} Z_{d\mu}$; $Z\text{-}Z_d$ mass matrix digonalization
- $\Rightarrow Z_d$ couples to EM current: $\mathcal{L}_{\text{int}} = -e\,\varepsilon\,J_{em}^\mu Z_{d\mu}$ $J_{em}^\mu = \sum_f Q_f \bar{f} \gamma^\mu f + \cdots$
 - ullet Like a photon, but arepsilon-suppressed couplings: "dark" photon
 - \bullet Neutral current coupling suppressed by $m_{Z_d}^2/m_Z^2 \ll 1$
- ullet Add $Z ext{-}Z_d$ mass mixing $o Z_d$ as "dark" Z HD, Marciano, Lee, 2012
 - "Dark" parity violation, rare meson and Higgs decays, . . .

Active experimental program to search for dark photon

Pioneering work by Bjorken, Essig, Schuster, Toro, 2009

ullet An early experimental target: $g_{\mu}-2$ parameter space

S. Alekhin *et al.*, arXiv:1504.04855 [hep-ph]

GeV-scale visibly decaying Z_d basically excluded as $g_\mu-2$ explanation

"Invisible" Dark Photon

ullet dark X with $m_X < m_{Z_d}/2$ and $Q_d g_d \gg e arepsilon \Rightarrow {\sf Br}(Z_d o X ar{X}) \simeq 1$

Recent 90% CL bound from Babar Collaboration, arXiv:1702.03327 [hep-ex]

GeV-scale "invisible" dark photon $g_{\mu}-2$ solution ruled out

Invisible Z_d and DM Production

- Possible production and detection of DM beams in experiments
- p or e on fixed target \Rightarrow production of boosted Z_d (meson decays, bremsstrahlung,...)
- ullet Z_d beam decays into DM which can be detected via Z_d exchange
- ullet Event rate depends on $lpha_d \equiv g_d^2/(4\pi)$ and $arepsilon^2$

Batell, Pospelov, Ritz, 2009 (p beam); Izaguirre, Krnjaic, Schuster, Toro, 2013 (e beam dump)

- $(\alpha_d, \varepsilon^2)$ typically assumed <u>constant</u> over q^2 ranges of experiments
- This talk: For $q^2\gg m_{Z_d}^2$, running of $\alpha_d(q^2)\gtrsim$ few \times 0.1 (and $\varepsilon^2\propto\alpha_d$) could be significant, sensitive to dark sector spectrum below q^2 HD, Marciano, 2015

See also Zhang, Li, Cao, Li, 2009; Sannino, Shoemaker, 2014 (non-Abelian gauge groups)

Light DM and Running Couplings

• Correct DM thermal relic density $(m_{Z_d} > m_X)$

$$\boxed{\alpha_d \sim 0.02 \, w \left(\frac{10^{-3}}{\varepsilon}\right)^2 \left(\frac{m_{Z_d}}{100 \, \, \mathrm{MeV}}\right)^4 \left(\frac{10 \, \, \mathrm{MeV}}{m_X}\right)^2}$$

- $w \sim 10(1)$ for scalar (fermion) DM E.g., Izaguirre, Krnjaic, Schuster, Toro, 1411.1404
- Experiments can probe $\varepsilon \lesssim 10^{-4}$, corresponding to $\alpha_d \sim 1$
- $\alpha_d \sim 1 \, \oplus \, {
 m light} \, {
 m DM} \, \, {
 m with} \, \, m_X^2 \lesssim q^2 \, \Rightarrow \, {
 m significant} \, \, \alpha_d(q) \, \, {
 m running}$
- ullet $m_X < m_{Z_d}/2$ for invisible Z_d while $q^2 \gtrsim m_{Z_d}^2$ can be typical
- Kinetic mixing naturally from loops: $\varepsilon^2 \propto \alpha \alpha_d \Rightarrow$ Running $\varepsilon(q)$
- Heavy F-loop $\to \varepsilon$; Light X-loop \to running

Numerical Analysis

- ullet For $lpha_d\sim 1$, higher order effects important
- ullet 2-loop analysis, with n_F fermions and n_S scalars

$$\beta(\alpha_d) = \frac{\alpha_d^2}{2\pi} \left[\frac{4}{3} \left(n_F + \frac{n_S}{4} \right) + \frac{\alpha_d}{\pi} (n_F + n_S) \right]$$

- $\beta(\alpha_d) \equiv \mu \, d\alpha_d / d\mu$
- \bullet Assume one light dark Higgs for $m_{Z_d} \neq {\rm 0} \ (n_S \geq 1)$ throughout
- Form of $\beta(\alpha_d)$ suggests perturbative analysis unreliable for $\alpha_d \gtrsim \pi$
- ullet Consider running above momentum transfer $q_0 \gtrsim m_{Z_d}$

The solid (dashed) curves correspond to a fermion (scalar) dark matter state, $q_0=0.1$ GeV $(m_{Z_d}\lesssim q_0)$. Left: one DM state; thin (thick) curves correspond to $\alpha_d(q_0)=0.6$ (0.9). Right: two DM states with $\alpha_d(q_0)=0.4$. From H.D. and W.J. Marciano, 1502.07383 [hep-ph]

- Beam-dump or fixed target experiments: range for q of $\mathcal{O}(\text{GeV})$
- Measurements sensitive to combined running of $\alpha_d(q)$ and $\varepsilon(q)$
- Probe number and type (spin) of low lying (below q^2) states

Measurement of q^2 Running

- ullet General features of Z_d interactions suggest an approach
- Definitive statements depend on experimental details
- Consider on-shell Z_d production $\propto \varepsilon^2(m_{Z_d})$
- Detection cross section $\sigma_{\rm DM} \propto \alpha_d(q) \varepsilon^2(q)$
- Loop-induced kinetic mixing: $\varepsilon^2(q) \propto \alpha_d(q) \Rightarrow \sigma_{\rm DM} \propto \alpha_d^2(q)$
- ullet At $q \gtrsim m_{Z_d}$, DM interactions with nucleus similar to QED
- Normalize $\sigma_{\rm DM}$ to electron (or muon) $\sigma_{\rm EM} \propto 1/q^2$ (well-understood, can be measured precisely)

$$R \equiv \sigma_{\rm DM}/\sigma_{\rm EM} \simeq \alpha_d \, \varepsilon^2/\alpha \simeq \xi \, \alpha_d^2$$
 $(\xi \simeq {\rm constant})$

Ignoring QED radiative corrections and $m_{Z_d} \neq 0$ propagator effects

Running of $R/\xi=\alpha_d^2$ with q, for one (solid) and two (dashed) light DM fermions and $\alpha_d(q_0)=0.25,\ q_0=0.1$ GeV, and $m_{Z_d}\lesssim q_0$; a dark Higgs boson is included for both cases. From H.D. and W.J. Marciano, 1502.07383 [hep-ph]

- ullet Running significant over $q \in [0.1, 4]$ GeV, the two cases quite distinct
- ullet σ_{DM} falls like $1/q^2$, for $q \gtrsim m_{Z_d}$ (modulo $lpha_d$ running)
- DM signal stronger for lower q^2 , while potential backgrounds from ν -nucleus scattering more suppressed (optimal q range depends on experimental setup)

Astrophysical Sources

Similar consideration could apply to lower energy scales

Example:

- ullet Emission of very light Z_d from the Sun; $m_{Z_d} \sim 10^{-6} \ {
 m eV}$
- Z_d emission governed by $\varepsilon^2(m_{Z_d})$ An, Pospelov, Pradler, 2013; Redondo, Raffelt, 2013
- DM detector as helioscope: $q^2 \sim \text{keV}^2$
- Dark photon absorption by detector atoms An, Pospelov, Pradler, 2013
- Absorption (ionization) in helioscope governed by $\varepsilon^2(q)$
- Event rate $\propto \varepsilon^2(m_{Z_d}) \, \varepsilon^2(q)$
- $q/m_{Z_d}\sim 10^9$: running of $\varepsilon^2(q)\propto \alpha_d(q)$ can be significant

$$m_{Z_d} = 10^{-6} \text{ eV}, \ q = 10^3 \text{ eV}, \ n_F = 1, \ n_S = 1 \text{ (mass } \sim m_{Z_d}), \ \alpha_d(m_{Z_d}) = 0.06$$
 $\Rightarrow \varepsilon^2(q)/\varepsilon^2(m_{Z_d}) = \alpha_d(q)/\alpha_d(m_{Z_d}) \simeq 1.5$

Theoretic Implications of a Landau Pole

- Landau pole $(\alpha_d \gg 1)$ at $q = q^*$ signals need for new physics
- Straightforward example: $U(1)_d \to SU(N)_d$
- Expect $\varepsilon = 0$ at $q = q^*$ [e.g., no kinetic mixing for $SU(N)_d$]
- ullet generated below q^* by loops of F with $Q_dQ_Y
 eq 0$ and $m_F < q^*$
- Experimental constraints: $m_F \gtrsim 100$ GeV, since $Q_Y(F) \neq 0$

• Implies that q^* should be above the weak scale

• Running of $\alpha_d(q)$

$$\alpha_d(q_0) = \frac{\alpha_d(q^*)}{1 + \frac{2}{3\pi}\alpha_d(q^*)(n_F + n_S/4)\ln(q^*/q_0)}$$

• For $\ln(q^*/q_0)\gg 1$, low energy $\alpha_d(q_0)$ insensitive to $\alpha_d(q^*)\gtrsim 1$

$$\alpha_d(q_0) \approx \frac{3\pi}{(2n_F + n_S/2)\ln(q^*/q_0)}$$

• For $q_0 \approx 100$ MeV:

$$q^* = 1 \text{TeV} \Rightarrow \alpha_d(q_0) \lesssim 0.5/(n_F + n_S/4)$$

$$q^* = M_{\sf Planck} \simeq 1.2 \times 10^{19} \; {\rm GeV} \Rightarrow \alpha_d(q_0) \lesssim 0.1/(n_F + n_S/4)$$

ullet Typically implies low energy upper bound $a_{
m d}({
m q_0})\lesssim 0.5$ $(q^*\gtrsim 1~{
m TeV})$

From arXiv:1702.02688 [hep-ex] (MiniBooNE Collaboration)

"Dark Matter Search in a Proton Beam Dump with MiniBooNE"

Concluding Remarks

- Dark sector may include new forces
- ullet $U(1)_d$ mediated by a sub-GeV Z_d a simple and widely considered example DM model building, $g_\mu 2$, . . .
- ullet DM may be light and couple to SM via the $Z_d-\gamma$ kinetic mixing $\propto arepsilon$ Typically requires $lpha_d\gtrsim 0.1$
- ullet Light DM may be probed at fixed target experiments Production and detection mediated by Z_d
- ullet Running of $lpha_d$ and a loop-induced arepsilon can be significant for $q^2 \gtrsim m_{Z_d}^2$
- Measuring $\alpha_d(q)$ and $\varepsilon(q)$ could probe the dark sector matter content Typical detection rate $\propto \alpha_d(q) \varepsilon^2(q)$ in dark beam experiments
- ullet Theoretical considerations imply $lpha_d \lesssim 0.5$ at low energies ($\sim m_{Z_d} \lesssim 0.1$ GeV) Assuming 1 or more dark fermions of mass $\lesssim m_{Z_d}$
- ullet Similar considerations could apply to lower m_{Z_d} scales (stellar physics)