Self-interacting dark matter

Sean Tulin

Phys. Rep. review in prep. w/ Hai-Bo Yu

Exploring the dark sector

Beyond the collisionless paradigm

Cold collisionless DM

N-body simulations (DM-only) predict cuspy density profiles (NFW)

Particles get scattered out of dense halo centers

Self-interacting DM (SIDM)

DM particles self-scatter in halos Density profiles become shallower (cored profiles)

Spergel & Steinhardt (2000)

Beyond the collisionless paradigm

Particles get scattered out of dense halo centers

Rotation curves reduced (apparent mass deficit in inner halo)

Motivation: Core-cusp problem/mass deficit problem

Moore (1994), Flores & Primack (1994)

Core-cusp problem:

Inner halo: $\rho(r) \sim r^{\alpha}$

Theory prediction: $\alpha \sim -1$ (cusp/NFW profile)

Observations: $\alpha \sim 0$ (core)

Mass deficit problem:

Inner halos have less DM mass than predicted from CDM

Small scale issues are prevalent in observations:

DM-dominated spiral galaxies in the field Rotation curves

(Dwarf and low surface brightness galaxies)

Milky Way satellites Stellar velocity dispersion

Massive clusters Stellar dispersion + lensing

Rotation curves in spiral galaxies

Tulin & Yu (in prep); Data from Oh et al [LITTLE THINGS] (2015)

Circular velocity (DM + stars + gas):

$$V_{\rm circ}(r) = \sqrt{V_{\rm halo}(r)^2 + \Upsilon_* V_{\rm star}(r)^2 + V_{\rm gas}(r)^2}$$

Unknowns:

$$V_{\rm halo}(r) = \sqrt{GM_{\rm halo}(r)/r}$$

Stellar mass-to-light ratio Υ_*

Mass deficit problem: NFW profile fit to V_{cir} at large radii predicts too-large V_{cir} at small radii

Mass deficit problem in MW satellites

Too big to fail problem Boylan-Kolchin, Bullock, Kaplinghat (2011 + 2012)

Biggest satellites should be in most massive halos

Observations: Line-of-sight stellar velocity dispersion

$$\sigma_{\rm LOS}^2 \approx 2.5 \frac{GM(R_{\rm half})}{R_{\rm half}}$$

Walker et al (2009)

Obtain enclosed mass M at half-light radius Only **one point** on rotation curve for each satellite All have M_{half} too small compared to predictions

Core-cusp problem in MW satellites

Divide stars into two subpopulations (metal-rich & metal-poor) "Test masses" in gravitational potential Calculate slope of rotation curve from two points

Cores in massive clusters

Cores in massive clusters

Use multiple measurements to study dark matter halo across 1-1000 kpc

Newman et al (2012)

Cores in massive clusters

Fit to seven 10¹⁵ M_{sol} relaxed clusters Assuming common mass-to-light (BCG homogeneity)

Cored density profile for one cluster

Cores seem to be (fairly) ubiquitous

Satellite dwarf spheroidal galaxies

Dwarf and low surface brightness galaxies in the field (Rotation curves)

Massive clusters

Explanations:

- 1. Failure of DM theory (need to go beyond collisionless CDM)
- Failure in DM-only simulations to describe real halos in DM+baryons Universe
- 3. Failure from other systematics in interpreting observations

Self-interacting dark matter

What scattering cross section value is needed?

Rate equation:

$$R_{\rm scat} = \sigma v_{\rm rel} \rho_{\rm dm}/m \approx 0.1 \,\rm Gyr^{-1} \times \left(\frac{\rho_{\rm dm}}{0.1 \,M_{\odot}/{\rm pc}^3}\right) \left(\frac{v_{\rm rel}}{50 \,\rm km/s}\right) \left(\frac{\sigma/m}{1 \,\rm cm^2/g}\right)$$

Figure-of-merit:
$$\sigma/m_\chi \sim 1~{\rm cm^2/g} \approx 2~{\rm barns/GeV} \approx \left(\frac{1}{60~{\rm MeV}}\right)^{\rm s}$$

Typical cross section required to solve small scale anomalies

Astrophysics points to dark physics at the MeV-GeV scale

Motivates searches for light dark states but doesn't say how they couple to SM

Self-interacting dark matter

Success of Λ CDM for large scale structure unaffected

$$R_{scat} \times t_{eq} \ll 1$$

Self-interactions only affect inner halos where

$$R_{\text{scat}} \times t_{\text{halo}} > 1 \quad (t_{\text{halo}} \sim 5 - 10 \text{ Gyr})$$

Cross section need not be fine tuned

N-body simulation of SIDM halo for dwarf galaxy. *Elbert et al. (2015)*

 $\sigma/m \sim 0.5 - 50 \text{ cm}^2/\text{g}$ Form \sim kpc core in dwarf galaxies

Cross section degenerate with scatter due to assembly history (Scatter in mass-concentration)

 $\sigma/m < 0.5$ – Cores too small

 $\sigma/m >> 50$ – Gravothermal collapse (Cuspier than NFW)

Baryonic astrophysics

Does including baryons in simulations solve small scale structure issues?

Feedback from AGN in clusters

N-body simulations with baryons

Feedback does not form dark matter cores

Feedback from supernovae

N-body simulations with self-interactions and baryons

Bursty star formation (High density threshold for star formation)

Smooth star formation (Low density threshold)

Diversity problem: challenge for feedback

Rotation curve-ology:

V_{max} = max velocity Observational proxy for halo mass

Central density ~ slope of rising rotation curve

Core radius ~ break in slope from rising to flat

Similar V_{max} halos can have very different core sizes and central densities Some rotation curves are perfectly consistent with CDM

Outliers with large cores

Even bursty prescriptions have trouble making cores > few kpc.

Example: *IC 2574*DM mass deficit within 5
kpc greater than total mass
in stars

Questions

 If dark matter is self-interacting, what are the particle physics implications?

 Does SIDM give a consistent solution to small scale issues from dwarfs to clusters?

 Is SIDM consistent with the observed diversity in rotation curves?

Particle physics of self-interactions

WIMPs have self-interactions (weak interaction)

 γ = dark matter (e.g. SUSY particle)

Z boson = mediator particle

Cross section:

$$\sigma \sim \frac{g^4 m_{\chi}^2}{m_Z^4} \sim 10^{-36} \,\mathrm{cm}^2$$

Mass:

$$m_{\chi} \sim m_Z \sim 100 \text{ GeV}$$

WIMP self-interaction cross section is way too small

$$\sigma/m_{\chi} \sim 10^{-14} \, {\rm cm}^2/{\rm g}$$

Particle physics of self-interactions

Large cross section required $\sigma/m_\chi \sim 1~{\rm cm}^2/{\rm g}$

Cross section:
$$\sigma \sim \frac{g^4 m_\chi^2}{m_\phi^4}$$

Mediator mass below than weak scale

$$m_{\phi} \sim 1 - 100 \; \mathrm{MeV}$$

Self-interactions require new dark sector states < 1 GeV.

Different halos are complementary

Low energies $(v/c \sim 10^{-4})$

Medium energies $(v/c \sim 10^{-3})$

High energies $(v/c \sim 10^{-2})$

Cross section depends on scattering energy.

Different size dark matter halos have different velocities.

Different halos are complementary

Low energies $(v/c \sim 10^{-4})$

Medium energies $(v/c \sim 10^{-3})$

High energies $(v/c \sim 10^{-2})$

Like a different particle physics collider with a different beam energy

Does SIDM explain all cores?

• What do astrophysical observations tell us about the cross section vs velocity, $\sigma(v)$?

 Can observations of cores in all systems be explained in a consistent particle physics picture?

Kaplinghat, ST, Yu (2015)

N-body simulations, Astro **Particle** observations models

No 1:1 correspondence between simulated and observed objects

Space of particle models too vast to scan over using simulations

Test method against N-body simulations

Modeling SIDM halos

Self-interactions only affect the inner halo where density is highest

Inner halo $(r < r_1)$: expect DM to be thermalized

Outer halo $(r > r_1)$: expect DM to be CDM (NFW)

Density at r₁ defines cross section where 1 scattering has occurred

rate × time
$$\approx \frac{\langle \sigma v \rangle}{m} \rho(r_1) t_{\text{age}} \approx 1$$

Instead of σ/m , we consider velocity-weighted cross section averaged over halo velocities

Modeling SIDM halos

Inner region: isothermal halo

Hydrostatic equilibrium + ideal gas law

$$\nabla p = -\rho \nabla \Phi$$
 $p = k_B T \rho / m$

Outer region: NFW halo (CDM)

Require $\rho(r)$ and $M_{encl}(r)$ are continuous at $r = r_1$.

Parametrizing the SIDM halo:

- core density ρ(r=0)
- velocity dispersion σ^2 (= k_BT/m)
- matching radius r₁

Solving rate equation at r₁:

$$\frac{\langle \sigma v_{\rm rel} \rangle}{m} = \frac{1}{\rho_{\rm dm}(r_1) t_{\rm age}}$$

SIDM profile for Abell 2537

Kaplinghat, ST, Yu (2015)

Astrophysical dataset

12 spiral galaxies + 6 clusters:

Clusters MS2137, A963, A611, A2537, A2667, A2390 *Newman et al (2012)*

Stellar kinematics + lensing data

Low surface brightness galaxies (LSBs) UGC4325, F563-V2, F563-1, F568-3, UGC5750, F583-4, F583-1 *Kuzio de Naray et al (2007)*

THINGS dwarf galaxies IC2574, NGC2366, HO II, M81dwB, DDO154 Oh et al (2011)

Rotation curves + assumption no core collapse

Cross section for each system

Cross section for each system

Cross section for each system

DM particle X + Massive $U(1)_x$ gauge boson ϕ

Only three parameters: DM mass, ϕ mass, coupling α' (Note: No kinetic mixing required)

Compute σ/m using nonrelativistic QM *Tulin, Yu, Zurek (2013)*

Caveat: Plot is very model dependent

Repulsive interaction (ADM)

Dark fine structure constant: $\alpha' = \alpha$

Caveat: Plot is very model dependent

Repulsive interaction (ADM)

Dark fine structure constant: $\alpha' = \alpha$

Self-interacting dark matter paradigm

DM particle X + mediator particle ϕ

 ϕ = dark photon, dark Higgs, dark pion, ...

Set relic density via freeze-out

Diversity problem for rotation curves

 Is SIDM consistent with the diversity of rotation curves?

• Are SIDM halos consistent with CDM on large scales (outside r_1)?

SIDM + NFW halos matched together at r1

Are those NFW halos cosmologically realistic?

Must satisfy concentration-mass relation (within scatter)

Diversity problem: challenge for feedback

SIDM consistent with diverse halos

Extreme outliers

Kamada et al (2016)

Two effects:

- 1. Scatter in concentration-mass relation (same as CDM halos)
- 2. In more luminous galaxies, gravitational effect of baryons shrinks cores (unique to SIDM)

$$\rho_{\rm dm}(r) = \rho_0 e^{-\frac{\Phi_{\rm tot}(r)}{\sigma^2}}$$

Isothermal density profile for SIDM in hydrostatic equilibrium Velocity dispersion σ=const

Conclusions

- Small scale structure offers possibility to explore DM beyond
 WIMP paradigm (even if decoupled from SM)
- Jury still out on whether small scale issues are actually a problem
- If SIDM solves small scale issues in dwarfs, then velocitydependent cross section favored (new light mediators)

Conclusions

Usual motivations for light dark sector states:

DM anomalies
Pamela/AMS-02
positron excess
Pospelov & Ritz (2008);
Arkani-Hamed et al (2008)

Conclusions

 Small scale structure issues are another motivation for sub-GeV dark physics (but doesn't say how it couples to SM)

Galaxy rotation curves for SIDM

More SIDM fits to clusters

