Light Thermal DM & Higgs Portal Mediators

Gordan Krnjaic Fermilab

Phys.Rev. D94 (2016) 1512.04119

CERN-EPFL-Korea Theory institute
"New Physics at the Intensity Frontier"

Zeroth Order Outstanding Problems

All other problems generically require extremely high scales DM can be much lighter

Obligatory DM Slide

Historical Analogy Understanding the Weak Force

Discovery of radioactivity

(1890s)

Fermi Scale identified

$$G_F \sim \frac{1}{(100 \text{ GeV})^2}$$
 (1930s)

Non-Abelian Gauge Theory

(1950s)

Higgs Mechanism

(1960s)

W/Z bosons

(1970s)

Higgs discovered

(2010s)

Each step required revolutionary theoretical/experimental leaps

 $t \sim 100 \text{ years}$

How long will we wait for DM?

Discovery of missing mass (1930s)

Rotation curves (1970s)

CMB power spectrum (1990s)

Relevant scale? > 2017

Non-gravitational interactions not guaranteed No clear target of opportunity

Discovery time frame? t > 80 yrs

DM Prognosis?

Bad news: DM-SM interactions are not obligatory

If nature is unkind, we may never know the right scale

Good news: most *discoverable* DM candidates are in thermal equilibrium with us in the early universe

Why is this good news?

Thermal Equilibrium Advantage #1: Minimum Annihilation Rate

Equilibrium, achieved easily with a tiny DM/SM coupling

$$n_{\rm DM} = \int \frac{d^3p}{(2\pi)^3} \frac{g_i}{e^{E/T} \pm 1} \sim T^3$$

Generically overproduces DM

Requires much larger annihilation cross section to deplete

$$\sigma v \ge \sigma v_{\rm relic} \sim 3 \times 10^{-26} {\rm cm}^3 {\rm s}^{-1}$$

Thermal Equilibrium Advantage #2: Narrows Mass Range

Heavy vs. Light #1

LDM needs new forces

Heavy DM can achieve right abundance w/ SM weak force

For LDM, annihilation via SM forces is too weak so equilibrium is lost too soon

$$m_{\chi} \sim \text{GeV} \implies \sigma v \ll 3 \times 10^{-26} \text{ cm}^3/\text{s}$$

DM overproduced unless there are light new force carriers

Avoiding LDM Overproduction

Choose light mediator

Must be SM singlet, options limited by SM gauge invariance

Vector Portal mix w/ photon (or gauge B-L etc.)

$$\epsilon F_{\mu\nu}F'_{\mu\nu}$$

Neutrino Portal mix w/ RHN

$$H^{\dagger}LN$$

Higgs Portal mix w/ SM Higgs

$$(H^{\dagger}H)\phi$$

Avoiding LDM Overproduction

Choose light mediator

Must be SM singlet, options limited by SM gauge invariance

Vector Portal mix w/ photon (or gauge B-L etc.)

Lots of attention here (wont discuss here)

Neutrino Portal mix w/ RHN

Hard to make thermal (decays, ν masses etc.)

Higgs Portal mix w/ SM Higgs

$$(H^{\dagger}H)\phi$$

 $\sin \theta$ $- \times - -$

SM coupling \propto fermion mass

Heavy vs. Light # 2

CMB rules out LDM < 10 GeV?

Planck 1303.5076

Safe models:

cross section is smaller @ CMB or annihilation stops @ CMB

Option 1: Smaller Cross Section

Velocity/Temperature Dependence

$$\sigma v \propto v^2$$

Rate large at freeze-out w/ $v \sim 0.1 c$

$$\langle \sigma v \rangle \big|_{T=m_{\chi}} = 3 \times 10^{-26} \text{ cm}^3/\text{s} \implies \Omega_{\chi} = \Omega_{\text{DM}}$$

Velocity redshifted at late times

$$\langle \sigma v \rangle \big|_{T=eV} \ll 3 \times 10^{-26} \text{ cm}^3/\text{s} \implies \text{CMB safe}$$

Choose DM/mediator combination to get v-dependence

Option 2: Annihilation Stops Later

Case Study: Asymmetric DM

Annihilation @ $T \sim m$ reduces antiparticle fraction

$$n_{\chi} \neq n_{\bar{\chi}} \propto \exp(-\langle \sigma v \rangle)$$

Counterintuitive: larger cross section is safer!

$$\frac{f_{\text{eff.}}\langle \sigma v \rangle e^{-\langle \sigma v \rangle}}{m_{\chi}} \ll 2 \times 10^{-28} \text{ cm}^3 \text{ s}^{-1} \text{ GeV}^{-1}$$

Easily satisfies CMB bound with $\langle \sigma v \rangle > 3 \times 10^{-26} {\rm cm}^3 {\rm \ s}^{-1}$ as required for asymmetric DM

Option 2: Annihilation Stops Later

Case Study: Inelastic couplings

Two-level co-annihilating system

As universe cools, heavier state is Boltzmann suppressed

$$n_{\chi_2} \propto e^{-\Delta/T}$$

annihilation shuts off at late times

Generic (e.g if dark there are dark Dirac & Majorana masses)

Choose CMB safe DM for for scalar mediator

Scalar DM s-wave annihilation

Need particle asymmetry and/or inelasticity for CMB safety

Choose CMB safe DM for for scalar mediator

Scalar DM

s-wave annihilation

Need particle asymmetry and/or inelasticity for CMB safety

Fermion DM

p-wave annihilation $g_\chi \phi \bar{\chi} \chi$

Can also include $\phi \bar{\chi} \gamma^5 \chi$ must be small (adds s-wave terms)

Both CMB safe $\sigma v \propto v^2$

Thermal Target: Direct Annihilation to SM

$$g_f = g_e \left(\frac{m_f}{m_e}\right)$$

Coupling scales with SM fermion mass

$$\sigma v = \sum_{f} (\sigma v)_f \propto g_{\chi}^2 g_e^2 \left(\frac{m_{\chi}}{m_{\phi}}\right)^4 \frac{1}{m_{\chi}^2}$$

Define dimensionless target
$$y\equiv g_\chi^2g_e^2\left(\frac{m_\chi}{m_\phi}\right)^4$$

Normalized to electron coupling because rate exists for every mass point

Thermal Target: Direct Annihilation to SM

Large theory uncertainty in SM coupling near QCD scale

Estimate from different numerical extractions from light Higgs literature

$$g_f(s) \simeq \sin \theta \sqrt{\frac{8\pi}{m_h} \Gamma(h \to SM)} \Big|_{m_h = \sqrt{s}}$$

Clarke, Foot, Volkas 1310.8042

Thermal Target: Rare B/K Decays

2/3 body decays to LDM/mediator

$$B^+ \to K^+ \phi, \ K^+ \chi \chi$$

 $K^+ \to \pi^+ \phi, \ \pi^+ \chi \chi$

constrained by

$$B^+ \to K^+ \nu \bar{\nu} \qquad K^+ \to \pi^+ \nu \bar{\nu}$$

Annihilation rate set by *small* yukawas FCNC constraints set by *top* yukawa

Bird, Jackson, Kowalewski, Pospelov arXiv: 0401195

How to compare meson decays w/target?

On shell decays to mediator independent of DM

Need to assume DM mass/coupling for thermal comparison

$$\Delta \text{Br}(B^+ \to K^+ \cancel{E}) \propto g_f^2 = y \times \frac{1}{g_\chi^2} \left(\frac{m_\phi}{m_\chi}\right)^4$$

Conservative worst-case "y" reach g_{χ} , $m_{\phi}/m_{\chi} \to \mathcal{O}(1)$ (choose smallest mass ratio still consistent with direct annihilation)

Thermal Target: Other Constraints

Higgs Invisible Width

Possibly compensate with additional *h* production, but can't avoid interference with 4*l* final state

Low Mass Direct Detection ~ GeV

Assuming elastic scattering invariant comparison with thermal target

$$X = \frac{\chi}{h}$$
 $N = N$

Direct Annihilation: Ruled Out

This is the most conservative prescription for all experimental bounds

Direct Annihilation: Ruled Out

Much heavier mediator is easier to rule out (need larger Higgs mixing angle)

DM Candidate Variations? (for direct annihilation)

Asymmetric DM?

No, annihilation rate bigger

Scalar symmetric DM?

No, death by CMB

Inelastic couplings?

No, colliders/mesons don't care

Motivates vector mediators for direct annihilation

Izaguirre, GK, Schuster, Toro PRL 115 (2015) 1505.00011

Secluded Annihilation to Mediators: Thermal Target?

Annihilation rate independent of SM

$$\sigma v(\chi \chi \to \phi \phi) = \frac{3g_{\chi}^4 v^2}{128\pi m_{\chi}^2}$$

Mediator decays visibly to SM final states through Higgs portal mixing

Can still produce/observe mediator, but no direct target

So long as annihilation is p-wave DM doesn't matter for bounds

Next best thing? Minimum mixing for thermal production

Assuming Higgs-mediator mixing *alone* produces thermal DM

$$\Gamma_{\text{SM}\to\chi\bar{\chi}} = \sum_{f} n_f(T) \langle \sigma | v | \rangle_{f\bar{f}\to\chi\bar{\chi}}$$

Requiring DM production rate > Hubble in early universe

$$\sin^2 \theta \gtrsim \frac{53\pi^3 \sqrt{g_*(m_t)} m_t}{g_\chi^2 \zeta(3) m_{Pl}} \approx 2 \times 10^{-13} ,$$

Reaching this sensitivity for $g_{\chi} \sim \mathcal{O}(1)$

would rule out thermal DM for the secluded annihilation scenario

Mediator mixing bounds (Comparable DM/mediator mass)

beam dump and meson bounds Clarke, Foot, Volkas 1310.8042

Thermal DM can live anywhere unshaded

Mediator mixing bounds (hierarchical DM/mediator mass)

Larger hierarchy is no longer Light DM (more WIMP-like)

Conclusions

Thermal DM important organizing principle for discovery effort

Viable over MeV-TeV range, need new BSM forces for MeV-GeV Finite, comprehensive list of mediator options for light new forces

Higgs portal thermal target already covered for direct annihilation

Direct annihilation scenario ruled out by rare meson and Higgs bounds Independent of DM candidate variations (fermion/scalar/asymmetric/inelastic)

"Secluded" thermal annihilation to mediators still viable/testable

Future direct detection (LZ, NEWS, Super-CDMS SNOLAB, Xenon1T...)

Current/proposed hadronic production searches (SHiP, NA62...)

Would be interesting to see if other experiments are also sensitive

SeaQuest, DUNE, MiniBooNE, future colliders (FCC,ILC...)?