Higgs doublet decay as the origin of the baryon asymmetry

Thomas Hambye Univ. of Brussels (ULB), Belgium

Based on: TH, Daniele Teresi, PRL 2016, arXiv:1606.00017

Baryogenesis via leptogenesis

very natural at high scale: a series of numerical coincidences which make it particularly efficient but very difficult to test

clearly possible at low scale: if seesaw seesaw states have a quasi-degenerate mass spectrum and/or if large cancellation among Yukawa couplings

this talk: new way at low scale: total lepton number violating Higgs doublet decay into ~0.1-100 GeV right-handed neutrinos

Leptogenesis relevant scales for low m_N

 $T_{Sphaler.} \sim 135 \, \mathrm{GeV}$

usual leptogenesis: $m_N >> T_{Sphaler.} > m_{H,L}$: leptogenesis from $N \to LH$ decay

 \hookrightarrow creation of L asymmetry at $T \sim m_N >> T_{Sphaler} \Rightarrow$ B asymmetry

very low scale leptogenesis: $T_{Sphaler.} > m_H >> m_{N,L}$

 \hookrightarrow creation of L asymmetry at $T > T_{Sphaler.} >> m_N \implies \neq \text{ regime}$

thermal effects are fully relevant: $T>T_{Sphaler.}>m_{H}>>m_{N,L}$ $m_{H}^{2}(T)=m_{H}^{2}+c_{H}\cdot T^{2} \qquad m_{L}^{2}(T)=m_{L}^{2}+c_{L}\cdot T^{2} \qquad m_{N}^{2}(T)=m_{N}^{2}+c_{N}\cdot T^{2}$

 $\searrow N \rightarrow LH$ forbidden but $H \rightarrow NL$ allowed

Temperatures allowing the $N \to LH$ and $H \to NL$ decays

 $H \rightarrow NL$ leptogenesis from this region?

L asymmetry production from $H \rightarrow NL$ decay

2 issues at first sight:

1) out-of-equilibrium decay?

3rd Sakharov condition

 \hookrightarrow H decaying particle is in deep thermal equilibrium at $T > T_{Sphaler}$.

but N in decay product is not necessarily in thermal equilibr.

$$\frac{dn_N}{dt} \propto (n_N^{eq} - n_N) \cdot \Gamma_{H \to NL}$$

$$\uparrow \qquad \uparrow$$

$$H \to NL \quad NL \to H$$

L asymmetry production from $H \rightarrow NL$ decay

2 issues at first sight:

2) Absorptive part for CP violation?

 $m_H + m_L > m_N \implies$ no absorptive part?

but only for T = 0!

finite T corrections: thermal cut: if H or L comes from the thermal bath the cut is kinematically allowed

Giudice, Notari, Raidal, Riotto, Strumia 03' Frossard, Garny, Hohenegger, Kartavtsev, Mitrouskas 12'

 \Rightarrow absorptive part $\Gamma_N(T)$ (calculated in Kadanoff Baym formalism)

Total L number violating CP asymmetry

$$\varepsilon_{CP} = \frac{\text{Im}[(Y_N Y_N^{\dagger})_{12}^2]}{(Y_N Y_N^{\dagger})_{11} (Y_N Y_N^{\dagger})_{22}} \cdot \frac{2 \Delta m_N^0 \Gamma_N(T)}{4 \Delta m_N(T)^2 + \Gamma_N(T)^2}$$

with thermal mass splitting:
$$\Delta m_N(T) \simeq \Delta m_N^0 + \frac{\pi T^2}{4 m_N^2} \Gamma_{22} \sqrt{\left(1 - \frac{\Gamma_{11}}{\Gamma_{22}})^2 + 4 \frac{|\Gamma_{12}|^2}{\Gamma_{22}^2}\right)}$$

$$\Gamma_{ij} \equiv m_N (Y_N Y_N^{\dagger})_{ij} / (8\pi)$$

Boltzmann equations:

$$\frac{n_{\gamma}H_{N}}{z} \frac{d\eta_{N}}{dz} = \left(1 - \frac{\eta^{N}}{\eta_{N}^{\text{eq}}}\right) \left[\gamma_{D} + 2(\gamma_{Hs} + \gamma_{As}) + 4(\gamma_{Ht} + \gamma_{At})\right],$$

$$\frac{n_{\gamma}H_{N}}{z} \frac{d\eta_{L}}{dz} = \gamma_{D} \left[\left(\frac{\eta^{N}}{\eta_{N}^{\text{eq}}} - 1\right)\epsilon_{CP}(z) - \frac{2}{3}\eta_{L}\right]$$

$$\frac{\eta_{N} \equiv n_{N}/n_{\gamma}}{z}$$

$$\frac{1}{z} \frac{d\eta_{L}}{dz} = \gamma_{D} \left[\left(\frac{\eta^{N}}{\eta_{N}^{\text{eq}}} - 1\right)\epsilon_{CP}(z) - \frac{2}{3}\eta_{L}\right]$$

$$\frac{1}{z} \frac{d\eta_{L}}{dz} = \gamma_{D} \left[\left(\frac{\eta^{N}}{\eta_{N}^{\text{eq}}} - 1\right)\epsilon_{CP}(z) - \frac{2}{3}\eta_{L}\right]$$

$$z \equiv m_{N}/T$$

Results for the case where the N have thermalized

if N thermalized by large Y_N Yukawas or other interaction (e.g. a W_R) before an asymmetry is produced

CP-asymmetry needed for successful leptog. FCC-ee $\log_{10} m_{\rm N}/{\rm GeV}$ SHiP NuTeV BBN PS191 -10 -8 -2 0 $\log_{10} \tilde{m}/\text{eV}$

the lower is m_N , the later it goes out-of-equilibrium, the more it will be in equilibr. at $T>T_{Sphaler}$.

lower bound on m_N $m_N > 2.2 \, {\rm GeV}$

if only
$$N \to LH$$
 decay we get: $m_N > 50\,{\rm GeV}$

 $\tilde{m} \equiv \frac{Y_N Y_N^{\dagger} v^2}{2m_N}$

requires that at least 2 of the N have quasi-degenerate masses

Results for the case where the N have not thermalized

• if no extra interaction thermalizing N, no thermalization is much more natural than in ordinary leptogenesis: thermalization at $T > T_{Sphaler.} >> m_N$ requires much larger Y_N Yukawas than in ordinary leptogenesis at $T \sim m_N$

$$\tilde{m} \equiv \frac{Y_N Y_N^{\dagger} v^2}{2m_N} \qquad \qquad \tilde{m} >> 10^{-3} \,\text{eV}$$

$$\tilde{m} \gtrsim 10^{-3} \,\text{eV}$$

• for $H \to NL$ decay, to start from no N in the thermal bath boosts the asymmetry production, unlike for ordinary $N \to LH$ leptogenesis $H \to NL$: many H to decay and produce the asymmetry but few N to $NL \to H$ inverse decay $n_N^{eq} - n_N \sim n_N^{eq} >> n_N$

Results for the case where the N have not thermalized

for example for $m_N \sim 10\,\mathrm{GeV}$ and $\tilde{m} \sim 0.1\,\mathrm{eV}$ one needs $\Delta m_N^0/m_N \lesssim 10^{-5}$ leptogenesis for m_N as low as $\sim 20\,\mathrm{MeV}$ is possible (but BBN concerns) in all cases: asymmetry production at T just above $T_{Sphaler}$. \Longrightarrow no dependence

on UV physics!

Testability!

Links with other very low scale frameworks

N oscillation frameworks

based on density matrix formalism

Akhmedov, Rubakov, Smirnov 98' Asaka, Shaposhnikov 05'; Shaposhnikov 08' Drewes, Garbrecht II' Canetti, Drewes, Frossard, Shaposhnikov 13' Hernandez, Kekic, Lopez-Pavon, Racker, Rius 15'

based on purely flavour asymmetries $>< H \to NL$ total L number violating framework which doesn't require

flavour

$$(Y_N Y_N^\dagger)_{ll} > (Y_N Y_N^\dagger)_{l'l'}$$
 especially if large Δm_N

 \longrightarrow production at $T \gtrsim T_{Sphaler}$.

has been considered in many \neq regimes: large/small Δm_N , large/small \tilde{m} , 2 or 3 N, many/few oscillat., ...

flavour asym.

L violating asym.

$$\propto Y_N^2 \, T^2$$
 production at $T>>> T_{Sphaler}$.

$$\propto m_N^2$$

 $\propto \frac{Y_N^4 \, m_N^2}{\Lambda m_N^2}$

$$\propto rac{Y_N^6 M_{Planck}^{4/3}}{(\Delta m_N^2)^{2/3}}$$

e.g. dominance or L violating asym. for Δm_N not too large, especially if no big cancellations between the Y_N in m_{ν} or if flavour hierarchy is small or low reheating temperature

Links with other very low scale frameworks

as a matter of principle the L violating decay contribution must also appear in density matrix formalism

there is a L violating term showing up in density matrix Boltzmann equations: `` R_M '' term, considered to be negligible for $T>>m_N$ and thus neglected for baryon asymmetry production

Shaposhnikov 08'
Canetti, Drewes, Frossard, Shaposhnikov 13'

we are computing and comparing the R_M contribution in N-oscillation formalism to our decay formalism contribution

Summary

In usual leptogenesis decay formalism the L violating H o NL decay can easily lead to enough baryon asymmetry for $m_N < m_H$

in type-I seesaw model with nothing else

 \hookrightarrow thanks to thermal effect leading to N self-energy thermal cut

from total L number violating CP asymmetries: no need for flavour interplay

 \hookrightarrow at electroweak scale temperatures: $T \gtrsim T_{Sphaler}$.

 \hookrightarrow with boosted production if no N to begin with

in a testable way (SHIP,...) for part of the parameter space

We are looking at same effect in density matrix formalism...

baryon asymmetries obtained for 3 values of $\Delta m_N^0/m_N$

