Tensions, hints, speculations. All around ALPs.

I. Tkachev

INR RAS, Moscow

27 February 2017, CERN

Outline

- Tension between low and high z cosmological measurements
 - Hint for Decaying Dark Matter (DDM). (Sterile neutrinos, ALPs?)
- Axion (ALP) cosmology and miniclusters
 - Review of minicluser formation
 - Tidal streams and new strategy for direct axion searches
 - Axion Bose stars and FRB
 - Collapse and explosion of Bose stars
- Astrophysical hints for light ALP

Tesion between low and high z measurments

Direct measurements:

 $h = 0.73 \pm 0.0175$

arXiv: 1604.01424

Planck derived cosmology:

 $h = 0.673 \pm 0.007$

arXiv:1502.01589

We have 3.2σ discrepancy. Systematics or a hint of new physics? May be something happened between recombination and today?

- ullet Fix relevant parameters at recombination as Λ CDM best fits.
- Fix angular diameter distance to last scattering.
- ↓ (Main features of CMBR spectrum will be reproduced)
- DM decays leads to different derived H_0 and σ_8 .
- Low and high z measurements can be reconciled.

- ullet Fix relevant parameters at recombination as Λ CDM best fits.
- Fix angular diameter distance to last scattering.
- ↓ (Main features of CMBR spectrum will be reproduced)
- DM decays leads to different derived H_0 and σ_8 .
- Low and high z measurements can be reconciled.

Berezhiani, Dolgov, & I.T., Phys.Rev. D92 (2015) 061303

Caveat to previous: gravitation lensing of CMBR anisotropies.

 ΛCDM is not good, but DDM is out of phase with residuals.

A. Chudaykin, D. Gorbunov and I.T., Phys.Rev.D 94 (2016) 023528

A. Chudaykin, D. Gorbunov and I.T., Phys.Rev.D 94 (2016) 023528

- ullet Low and high z data still may be reconciled
- With current data improvement of DDM over $\Lambda \mathrm{CDM}$ is 2.5σ
- There are many candidates for DDM. (Sterile neutrinos, ALPs?)

Axion production mechanism

Peccei-Quinn phase transition at $T \sim f_a$

Axion potential switches on at QCD epoch

$$V(a) = f_a m_a(T) \left[1 - \cos(heta)
ight]$$
 where $heta \equiv a/f_a$

Axion oscillations start when

$$m_a(T) \approx 3H(T)$$

This happens at

$$T_{\rm osc} \approx 1~{
m GeV}$$

Miniclusters

- Before axion mass turns on: $\theta \approx {\rm const}$ on a horizon scale l_H .
- ullet After: $0\lesssim\Delta heta\lesssim\pi$. This is initial amplitude of oscillations:
 - $M \sim 10^{-12}\,M_\odot$ objects form, which is DM mass within l_H
 - Axion self-coupling is non-negligible
 - Non-linear objects form

Minicluster Formation

$$\delta \rho_a/\rho_a \equiv \Phi$$

Spatial distribution of energy density. The height of the plot $\Phi=20$.

Mass fraction in miniclusters with $\Phi>\Phi_0$ as a function of $\Phi_0.$

E.Kolb & IT, Phys.Rev. D49 (1994) 5040

Density of a minicluster now

Initially

$$\delta \rho_a/\rho_a \equiv \Phi$$

Clump separates from cosmological expansion at $T pprox \Phi T_{
m eq}$, therefore minicluster density today

$$ho_{
m mc} pprox 140\Phi^3(1+\Phi)ar
ho_a(T_{
m eq})$$

Valid for both miniclusters $(\Phi\gtrsim1)$ and minihalos $(\Phi\ll1)$

Minicluster abundance

Typical miniclusters with $\Phi \approx 1$:

- 10²⁴ in the Galaxy
- ullet $10^{10}~{
 m pc}^{-3}$ in the Solar neighborhood
- Minicluster radius $\sim 10^7 \; \mathrm{km}$
- Direct encounter with the Earth once in 10^5 years
- ullet During encounter density increases by a factor 10^8 for about a day

But, some miniclusters are destroyed in encounters with stars. This may change the prospects for DM detection.

Tidal streams from ministers

Probability of a minicluster disruption

$$P(\Phi) = 0.022 \left(rac{n}{100}
ight) \Phi^{-3/2} \left(1 + \Phi
ight)^{-1/2}$$

P.Tinyakov, IT and K. Zioutas, JCAP 1601 (2016) 035

Axion direct detection

Crossing tidal streams

Mean number of encounters with axion streams producing amplification factor larger than A, as a function of A. Twenty year observation interval is assumed.

P.Tinyakov, IT and K. Zioutas, JCAP 1601 (2016) 035

Axion Bose-stars

Bose-condensation in miniclusters

Relaxation time is enhanced in axionic halo due to large phase space density

$$t_R^{-1} \sim \lambda_a^2
ho_a^2 v_e^{-2} m_a^{-7}$$
 IT, Phys. Lett. B 261 (1991) 289

Miniclusters with $\Phi>30$ Bose condense, forming "Bose-stars"

E.Kolb & IT, PRL 71 (1993) 3051

Radius of the star ~ 300 km, light propagates across of it in 1 ms.

FRB - mysterious astrophysical phenomena

- Short radio flash, 1 ms
- ullet Cosmological origin, $z\sim 1$
- Energy release $10^{38} 10^{40} \text{ ergs}$
- ullet Huge brightness temperature $T_B \sim 10^{36} \; {
 m K}$
- Rate: $\sim 10^4 \ {
 m events/day}$ for the whole sky.

- Radius of axion Bose-star 1 ms
- Minicuster mass $10^{-12} M_{\odot} = 2 \times 10^{42} {
 m ergs}$
- Bose-star can explode in a burst of coherent radiation
- We have 10²⁴ miniclusters just in a Galaxy

Can FRBs be explained by axion star explosions into pure radiation?

IT, JETP Letters 101 (2015) 1

A. Iwazaki, PRD 91(2015) 023008

FRB - mysterious astrophysical phenomena

- Short radio flash, 1 ms
- ullet Cosmological origin, $z\sim 1$
- Energy release $10^{38} 10^{40} \text{ ergs}$
- ullet Huge brightness temperature $T_B \sim 10^{36} \; {
 m K}$
- Rate: $\sim 10^4 \ {
 m events/day}$ for the whole sky.

- Radius of axion Bose-star 1 ms
- Minicuster mass $10^{-12} M_{\odot} = 2 \times 10^{42} \ \mathrm{ergs}$
- Bose-star can explode in a burst of coherent radiation
- We have 10²⁴ miniclusters just in a Galaxy

Can FRBs be explained by axion star explosions into pure radiation?

IT, JETP Letters 101 (2015) 1

A. Iwazaki, PRD 91(2015) 023008

FRB - mysterious astrophysical phenomena

- Short radio flash, 1 ms
- ullet Cosmological origin, $z\sim 1$
- Energy release $10^{38} 10^{40} \text{ ergs}$
- ullet Huge brightness temperature $T_B \sim 10^{36}~{
 m K}$
- Rate: $\sim 10^4 \ {
 m events/day}$ for the whole sky.

- Radius of axion Bose-star 1 ms
- Minicuster mass $10^{-12} M_{\odot} = 2 \times 10^{42} \ \mathrm{ergs}$
- Bose-star can explode in a burst of coherent radiation
- We have 10²⁴ miniclusters just in a Galaxy

Can FRBs be explained by axion star explosions into pure radiation?

IT, JETP Letters 101 (2015) 1 A. Iwazaki, PRD 91(2015) 023008

FRB spectra shifted to their rest frame

ALP Bose star instability

$$V(a) = m^2 f_a^2 \left(rac{1}{2} \, heta^2 - rac{g_4^2}{4!} \, heta^4 + \dots
ight) \; , \qquad heta \equiv a/f_a \; ,$$

Self-coupling of axions is negative and axion Bose stars are unstable against collapse.

D.Levkov, A.Panin, & IT, PRL 118 (2017) 011301

ALP Bose star collapse

Self-similar wave collapse

Repeated explosions

But black hole does not form for $f_a < M_{Pl}$ D.Levkov, A.Panin, & IT, PRL 118 (2017) 011301

Decay of Bose star on relativistic axions

Spectra of emitted particles

Total emitted energy fraction

D.Levkov, A.Panin, & IT, PRL 118 (2017) 011301

Why decay on relativistic itself is interesting?

- Recall DDM
- Also, important for ultra-light DM

Structure formation with ultra-light ALP:

Hsi-Yu Schive et al, Nature Phys. 10 (2014) 496

Why decay on relativistic itself is interesting?

Structure formation with ultra-light ALP

Hsi-Yu Schive et al, Nature Phys. 10 (2014) 496

Cores are heavy Bose-stars. It was speculated they collapse into black holes ...

Constraints on axions: definition of parameters

Axion interactions with gauge fields and fermions

$$L_{
m int} = -rac{1}{4} g_{a\gamma}\, a F_{\mu
u} ilde{F}^{\mu
u} - \sum_{
m fermions} g_{ai}\, a \overline{\psi}_i \gamma_5 \psi_i \,,$$

where

$$g_{a\gamma} \equiv rac{lpha}{2\pi}rac{C_{a\gamma}}{f_a}, ~~ g_{ai} \equiv rac{m_i}{f_a}C_{ai}$$

with $C_{a\gamma}$ and C_{ai} model dependent parameters.

Constraints on and hints for ALP

Constraints from stars

Hertzsprung-Russell diagram

Extra particle emission:

- larger maximum red-giants luminosity
- smaller helium burning lifetime (observed abundance of HB stars)
- increased rate of cooling for WD
- increased rate of cooling for NS

Hints for ALPs from stars

M. Giannotti, et al, JCAP 1605 (2016) 057

Hints for ALPs from stars

Hints of extra energy losses by stars

- ullet $g_{a\gamma}$ from Helium Burning stars: $g_{a\gamma}=4.5^{+1.2}_{-1.6} imes10^{-11}~{
 m GeV}^{-1}$
- g_{an} from neuron stars: $g_{an} \approx 4 \times 10^{-10}$
- g_{ae} from White Dwarfs and Red Giants:

All can be combined if e.g. $C_{a\gamma} \sim 1$, $C_{ai} \sim 10^{-2}$ Overall, axion/ALP solution is favored at about 3σ

For reviews see e.g. A. Ringwald, arXiv:1506.04259

M. Giannotti, arXiv:1508.07576, arXiv:1611.04651

Coinclusions

- A number of recent cosmological and astrophysical observations are in tension with conventional explanations
- It is tempting to speculate that they give us a hint for a new physics - ALPs