Drive beam generation

B. Jeanneret CLIC-ACE , may 2009 With material and advice from E. Adli, C.Biscari, R. Corsini, D.Schulte, F. Stulle

Drive beam parameters

3 TeV

500 GeV

R. Corsini, ACE sep08

Drive beam current initial	4.2 A
Drive beam current final	100 A
DB bunch charge	8.4 nC
Drive beam energy	2.35 GeV (⇒ 240 MeV)
DB acceleration frequency	1 GHz
DB bunch frequency initial	0.5 GHz
DB bunch frequency final	12 GHz
DB pulse length initial	140 μs
DB pulse length final	240 ns
Combination factor	2 × 3 × 4 = 24
Number of sectors/linac	24
Sector length	868 m
Length delay loop/line	72 m
Length combiner ring 1	145 m
Length combiner ring 2	434 m
Rms bunch length final	1 mm
Power per PETS	136 MW

106 A

2.54 GeV

Frequency multiplication, transfer, compression

- OPTICS : DL, CR1, CR2, DBTL, TAs
- BEAM DYNAMICS
- GRADIENT AND BUNCH POPULATION
- PHASE ERROR, PHASE CONTROL

C. Biscari, BJ PAC09

Quad-triplet :

$$R_{56} = \int \frac{D(s)}{\rho(s)} ds = 0$$

Sextupoles :

 $T_{566} = 0$

 $Q'_{x,y} = 0$ $\partial \beta / \partial \delta = 0$

All this would ideally requires 3 families of sextupoles at well Defined phase advances (x and y)

In practice : - Not enough $\Delta \mu$ /per cell , ratio D/ß inadequate ,...

- dp = 0.02 \rightarrow large higher-order effects with many sextupoles

- \rightarrow presently, explore with 1 family only

- -Work off-energy to avoid large ∂p <0
- Full 6D tracking with errors, etc

Present Turn-Around

- 80m-long vs. 146m/CR1
- Twice more dipoles (accept. CSR)
- Larger D/ρ

•

- stronger quads
- More aberrations, ...
- Correcting longitudinal and transverse phase space simultaneously not possible

→Need new TA optics similar to CR1 with L_{TA} ≈ 150m COST : Presently DBTL + 48 TA : 3% of total $L_{TA} \rightarrow 2L_{TA}$: 3.7% of total

Delay Line

- Presently : Layout is a ring
 - Constraint : L_{DL} = 73 m (beam train length)
 - As with TA : transverse chromatic effects
 - SAME CURE : longer length
- Go to a 'Ω' shape

 $L_{loop} = 135m$ $L_{straight} = 62 m$

Total extra-length : $L_{loop}+L_{straight}-\Delta L = 123 \text{ m}$

(small extra-cost)

Straight segment : Very useful for beam diagnostics After Linac

CR2 / Down to tunnel /DBLongTL Optics

- CR2
 - L_{CR2} = 438 m
 - Not studied at 2nd order
 - But length comfortable \rightarrow a priori not problematic
- Down to tunnel
 - No studied
 - Common tunnel with Main Beam
 - Main beam more critical (vertical bends vs. Small ε_v , may require $\varepsilon_v \Leftrightarrow \varepsilon_x$)
 - A priori, not critical for Drive Beam
- Long Transfer line
 - L= 20 km, simple FODO
 - Long cells avoids large chromatic detuning and filamentation
 - Needs limited beam based alignment
 - No critical issues, see CLIC Note 760

Beam dynamics from DL \rightarrow DECEL

- Presented by R. Corsini at ACE-sep08, see also CLIC Note 761
- N-bunch resistive wall instabilities
 - Large effect (3000 bunches, 5 $10^{10} e^{-1}$ (8 nC), spaced by 2.5 cm
 - − $W_{\perp} \sim a^{-3}$ → CURE : use vac. Chamber with large radius (copper)
 - Long transfer line (L= 20 km, large β 's) : a = 100 mm
 - Other lines :

: a = 25 mm

- Vacuum
 - e⁻ ionise and confine +ions
 - $\Delta\mu$ between head and tail of trains \rightarrow correctability, filamentation
 - Beam/ion instabilities
 - CURE : $p < 10^{-10}$ Torr . Reachable with getter + bake-out
- ISSUE : "not more than" COST (budgeted already)
- Emmitance growth small

RF deflectors in DL,CR1,CR2

- OK in CTF3
- But larger current in CLIC 100 A vs. 12A, while higher energy helps
- Need more work in order to fix a 'level of criticality' vs. Collective effects
- optimize ring tune for min. transverse excitation by deflector (R.Corsini, D. Schulte)

Transverse position error at the entrance of the Decelerator

- $\Delta x/\sigma_{\beta}$ =0.3 for <5% increase of amplitude at the DECEL exit (E. Adli)
- At deflectors ($\beta {=}15m,\,\epsilon {=}2{\cdot}10^{{\cdot}8}\,m)$, $\sigma' {=}~4{\cdot}10^{{\cdot}5}\,$ rad
- Deflector kick $K_d = 5 \cdot 10^{-3}$ rad
- Beam will pass through n_{defl} = 9 deflectors (DL 2, CR1 3, CR2 4)

$$\frac{\delta K_{defl}}{K_{defl}} = \frac{0.15\sigma'}{n_{defl}^{1/2}K} = 0.4 \cdot 10^{-3}$$

Similarly, with n_{kick} kickers (CR1,CR2,in-TA) :

$$\frac{\delta K_{kick}}{K_{kick}} = \frac{0.15\sigma'}{n_{kick}^{1/2}K} = 0.7 \cdot 10^{-3}$$

Remains to translate this Into detailed specification

Incoherent synchrotron radiation

- X-ray @ 6 keV : L_{absorption} = 50 μm (Aluminium)
- Impact angle : ~ 0.2 rad
- ΔT = 80 °K @ 50 Hz
- Risk of rapid ageing

TIME STRUCTURE

Overall dE/E of ISR varies between Trains travelling :

- MIN : No DL, 1×CR1, 1×CR2
- MAX: 1×DL, 3×CR1, 4×CR2
- Max dE/E = 2 o/oo
- Converts to dz after last chicane before DECEL
- 1% longitudinal z-pitch modulation

Cure :

- make the DL, CR1, CR2 longer accordingly

- complicates the feed-forward $\varphi-$ correction (see slide 20)

Tolerance on Phase and Gradient

 Luminosity and understanding/adjustment of the Beam Delivery and of the Final Focus

$$\left\langle \frac{\Delta \mathcal{L}}{\mathcal{L}} \right\rangle = 0.01 \left[\left(\frac{\sigma_{\phi,coh}}{0.2^o} \right)^2 + \left(\frac{\sigma_{\phi,inc}}{0.8^o} \right)^2 + \left(\frac{\sigma_{G,coh}}{0.75 \cdot 10^{-3}G} \right)^2 + \left(\frac{\sigma_{G,inc}}{2.1 \cdot 10^{-3}G} \right)^2 \right]$$

D.Schulte & R.Tomas, PAC09

$$\delta \mathcal{L} \sim \delta_{\phi}^2 ~~\mathrm{and}~ \delta_G^2 ~~$$
 $ightarrow$ Not much margin on these

Gradient error for MB

A bunch of the main beam see always the gradient as built-up by the same $n_b = 0.5f_0 \cdot \tau_{fill-MBAS} \cong 400$ DB bunches ahead of it

With N the bunch population , And 'inc' as for 'per sector'

Stability of the DB in the DECEL :

An overcurrent of 1% over τ_{fill-PETS}≡ 10 b. makes the last bunch of these unstable Before the end of the DECEL

 $\left\{ \begin{array}{l} \Rightarrow \ \frac{1}{\sqrt{n_b}} \frac{\sigma_N}{N} \ = \ \left(\frac{\sigma_G}{G}\right)_{\rm inc} \stackrel{spec}{=} 2 \cdot 10^{-3} \\ \\ \Rightarrow \ \frac{\sigma_N}{N} \simeq 4 \cdot 10^{-2} \end{array} \right.$ At the entrance of the DECEL

$$\frac{\delta N}{N} \Big|_{n_b=5} < 1\% \quad \Rightarrow \quad \frac{\delta N}{N} < 2.2\% \text{ random}$$

$$\Rightarrow \quad \frac{\sigma_N}{N} < 0.7\% \text{ random}$$

Stability over a whole cycle :

$$\left(\frac{\sigma_I}{I}\right)_{\rm coh} = \left(\frac{\sigma_G}{G}\right)_{\rm coh} = 0.75 \cdot 10^{-3}$$

Tolerance on DB bunch population

$$\left(\frac{\sigma_N}{N}\right)_{\text{DECEL,inc}} = \left[\left(\frac{\sigma_N}{N}\right)_{\text{loss}}^2 + \left(\frac{\sigma_N}{N}\right)_{\text{source}}^2\right]^{1/2} \simeq 7 \cdot 10^{-3}$$

- Losses : constant part is harmless (adjust N_{source})
- Erratic part :
 - transverse n-poles in RF structures, RF deflectors, magnets
 - Badly understood optics (chromatic errors)
 - Time dependent error in kickers
- Not explored as yet.
- Until we know more about loss control :

$$\left(\frac{\sigma_N}{N}\right)_{\text{loss}} = \left(\frac{\sigma_N}{N}\right)_{\text{source}} \simeq 4 \cdot 10^{-3}$$
 Maybe still optimistic
Need a more elaborate
Statistical model
$$\left(\frac{\sigma_I}{I}\right)_{\text{coh}} = \left(\frac{\sigma_G}{G}\right)_{\text{coh}} = 0.75 \cdot 10^{-3}$$

Together with :

Timing and feed-back strategy in the tunnel

To relax on $\delta \phi$: feed-forward & back before entering the DECEL •

Open issue: frequency band of δE correction

C&D, Phase error MB/DB, to synchronize the injector linacs

Phase control - I

 $\delta\phi_{\rm MB/DB} = 0.2^o \ / \ 0.8^o \ \ [\rm coh, inc] \qquad {\rm At \ 12 \ GHz}$

 $\delta \phi = 0.2^o$ @f₀ = 12GHz $\equiv \delta z_{tol} = 14 \ \mu \equiv \delta t_0 = 46 \ fs$

Scheme : correct the phase with fast feed-forward in the final chicane and slow feed-back to the injectors.

Ingredients :

- measurement of the 9 GeV MB (keep in memory for $T = [0..23] \times 6 \mu s$)
- error in the 9 GeV MB from Injector and in the MB-TA
- DB TA length must be very stable ⇔ magnet stability to be specified
- measurement of the DB
- error of the feed-forward adjustement of the chicane
- transmission error in the timing system
- bandwidth limit for correction
- periodic dE/E structure complicating the measurement (slide 13)
- Path-lengths variations to be worked-out everywhere

J.Sladen proposed a Solution,down to 20 fs → cost

Decelerator : conclusions (from E. Adli, last ACE)

- Simulations gives reasonable confidence for minimum-loss transport of the decelerator beam
- Beam-Based Alignment is needed, and Dispersion-Free Steering seems to be an excellent alternative
- Dispersion-Free Steering comes almost "for free" with the use of delayed switching
- Tune-up procedures must be applied

Value

Tolerance

Simulations need to be benchmarked and technology needs to be proven: TBTS and TBL

PETS Internal tolerances, perf,... : not discussed here

Comment

 $r_0 = 3.5 \text{ mm}$: nominal max beam enveloppe

			$D - 1^{\prime}$	1 E mm	
PETS offset	100 μm	r _c < 1 mm fulfilled	$R_{iris} = 11.5 \text{ mm}$		
PETS angles	~ 1 mrad	r _c < 1 mm fulfilled	Tolerance	Value	Comment
Quad angles	~ 1 mrad	r _c < 1 mm fulfilled	Quadrupole position jitter	1 μm	δr/r ₀ < 5 %
Quad offset	20 µm	Must be as small as possible to be able to transport alignment beam	Quadrupole field ripple	1· 10 ⁻³	δr/r ₀ < 5 %
BPM accuracy (incl. static misalignment and elec. error)	20 µm	Must be as small as possible to be able to do initial correction	Current jitter	< 1%	Stability req. only – RF power constraints might be tighter.
PM precision diff. measurement)~ 2 μmAllows efficient suppression envelope growth due to dispersive trajectories		Beta mismatch, $d\beta/\beta$	~10 %	δr/r ₀ < 5 %	
			Dynamic tolerances		

Critical issues, injector \rightarrow end TA

System	Baseline design	Critical issues	Criticality 13	Cost 13	status
Injector	NA	dl/l	2		See E. Jensen
Linac	Under work	<mark>dφ , dE/E</mark> Klyst./modul. optics	3?	2	Feasability ? NA
DL+CR1+CR2 OPTICS	CR1 exists	ISR absorbtion 6D-chrom RF deflectors	2 2		Need study ~OK, need refined study Coll. effects, under work
Transfer to tunnel	NA	-	-		
DBTL	exists	-	-		
Decelerators	exists	See summary above	3	3	
Dumps	Proof of feas.	-	-		Need effective layout
Collective effects CR→TA		N-bunch resist. wakes, vacuum		1	OK (cost)
DL→TA → DECEL chicanes		dø, dN/N, dE	3		Still much work Overall timing strategy RF, Instrumentation
		Emittance growth	1		Full tracking with error needed
		Beam loss control, melting/radiation	?		See M. Jonker

Summary and close future (CDR)

- Most critical issues
 - Phase control $d\phi = 0.2^{\circ} \leftrightarrow$ chicane / feed-forward / timing strategy
 - Bunch current \leftrightarrow source and loss control
 - RF deflectors \leftrightarrow design, tolerance, beam instabilities
 - ISR absorption \leftrightarrow thermal stress, materials
- For CDR (proposal)
 - Full optics study of CR1 ↔ 6D chrom, Length adjustment
 (If OK : DL, CR2 , TA granted)
 - Coordinated effort for $d\phi$ by RF/CO/BI/ABP
 - Better statistical model for I_{bunch}, sources, losses

Reserve slides

Chicanes and compression at the end of the Turn-around

Presently : $R_{56} = (\sigma_{2,z} - \sigma_{1,z}) / \sigma_{\delta E} = -0.33 \text{ m}$

This value is large and converts energy jitters into large phase errors \rightarrow Make use of the larger possible momentum window of $\Delta E = \pm 2\%$ $\rightarrow \sigma_{\delta E} = 3^{e-3} \rightarrow \sigma_{\delta E} = 6^{e-3} \Rightarrow R_{56} = -0.16 \text{ m}$

More comfortable, but a new study is needed (both chicane and chirp in DB Linac)