

Accelerating structures: 3 TeV and 500 GeV CLIC designs, HOM damping and technology alternatives

26.05.2009 Alexej Grudiev

Alexej Grudiev, Accelerating structures.

- 3 TeV CLIC accelerating structure design
- 500 GeV CLIC accelerating structure design
- Alternative HOM damping
 - Choke mode damping
 - Damped Detuned Structure
- Technology alternatives
 - Quadrant
 - Brazed Disk
 - Single rounded cell
 - Double rounded cell
- Coupler alternatives
 - Mode launcher coupler
 - Electric coupler
 - Magnetic coupler with damping
- Ridged waveguide damping for lower pulse surface heating temperature rise

3 TeV CLIC accelerating structure design

Alexej Grudiev, Accelerating structures.

Beam dynamics (BD) constraints based on the simulation of the main linac, BDS and beam-beam collision at the IP:

- N bunch population depends on <a>/ λ , Δa /<a>, f and <E_a> because of short-range wakes
- N_s bunch separation depends on the long-range dipole wake and is determined by the condition:

 $W_{1,2} \cdot N / E_a = 10 V/pC/mm/m \cdot 4 \times 10^9 / 150 MV/m$

RF breakdown and pulsed surface heating (rf) constraints:

- · $\Delta T^{max}(H_{surf}^{max}, t_p) < 56 \text{ K}$
- $E_{surf}^{max} < 260 \text{ MV/m}$

•
$$P_{in}/C_{in} \cdot (t_p^{P})^{1/3} = 18 \text{ MW} \cdot ns^{1/3}/mm$$

Luminosity per linac input power:

Total cost = Investment cost + Electricity cost for 10 years

 $C_{t} = C_{i} + C_{e}$ $C_{i} = Excel{f_{r}; E_{p}; t_{p}; E_{a}; L_{s}; f; \Delta \phi}$ Repetition frequency:
Pulse energy;
Pulse length;
Accelerating gradient;

Structure length (couplers included);

Operating frequency;

rf phase advance per cell

$C_e = (0.032 + 2.4/FoM)$

Parameters of 3TeV structure CLIC_G

243

128

47.9

29.7

Structure	CLIC_G					
Frequency: f [GHz]	12					
Average iris radius/wavelength: < <i>a</i> >/λ	0.11					
Input/Output iris radii: <i>a</i> _{1,2} [mm]	3.15, 2.35					
Input/Output iris thickness: <i>d</i> _{1,2} [mm]	1.67, 1.00					
Group velocity: $v_g^{(1,2)}/c$ [%]	1.66, 0.83					
N. of reg. cells, str. length: N _c , <i>l</i> [mm]	24, 229					
Bunch separation: N _s [rf cycles]	6					
Luminosity per bunch X-ing: L_b [m ⁻²]	1.22 10 ³⁴					
Bunch population: N	3.72 10 ⁹					
Number of bunches in a train: N_b	312					
Filling time, rise time: $ au_f, au_r$ [ns]	62.9, 22.4					
Pulse length: τ_p [ns]	240.8					
Input power: <i>P_{in}</i> [MW]	63.8					
$P_{in}/Ct_{p}^{P_{1/3}}[MW/mm ns^{1/3}]$	18					
Max. surface field: E_{surf}^{max} [MV/m]	245					
Max. temperature rise: ΔT ^{max} [K]	53					
Efficiency: η [%]	27.7					
Figure of merit: ηL_b /N[a.u.]	9.1					

Parameters assuming coupler overhead

Alexej Grudiev, Accelerating structures.

.....

CLIC-ACE, 26 May 2009

25

20

iris number

Constraints @ {200ns, BDR=10⁻⁶ bpp/m} ~ {180ns, BDR=3 \times 10⁻⁷ bpp/m}

mmm

500 GeV CLIC accelerating structure design

Alexej Grudiev, Accelerating structures.

- RF constraints remains the same as for 3TeV:
 - $P/C^* t_p^{1/3} < 18 Wu(MW/mm^*ns^{1/3})$
 - $E_s^{max} < 260 \text{ MV/m}$
 - ΔT^{max} < 56 K
 - RF phase advance per cell: 120 or 150 degree
- No 3TeV constraints:
 - Structure length L_s more than 200 mm;
 - Pulse length t_p is free
 - Bunch spacing N_s is free
- **3TeV constraints** $N_s = 6$: 1. $L_s = 230 \text{ mm}$; $t_p = 242 \text{ ns}$ 2. $L_s = 480 \text{ mm}$; $t_p = 242 \text{ ns}$ 3. $L_s = 480 \text{ mm}$; $t_p = 483 \text{ ns}$

If repetition rate is limited to 50 Hz 顾

IIC

$$\begin{array}{c} \bullet & 2\pi/3: \ N_s = {\rm free}, \ L_s > 200 {\rm mm}, \ t_p = {\rm free} \\ \bullet & 2\pi/3: \ N_s = 6, \ L_s = 230 {\rm mm}, \ t_p = 242 {\rm ns} \\ \bullet & 2\pi/3: \ N_s = 6, \ L_s = 480 {\rm mm}, \ t_p = 242 {\rm ns} \\ \bullet & 2\pi/3: \ N_s = 6, \ L_s = 480 {\rm mm}, \ t_p = 483 {\rm ns} \\ \bullet & 2\pi/3: \ N_s = 6, \ L_s = 480 {\rm mm}, \ t_p = 483 {\rm ns} \\ \bullet & 0 \ {\rm CLIC} \%_G, \ t_p = 242 {\rm ns} \\ \bullet & 0 \ {\rm CLIC} \%_G, \ t_p = 483 {\rm ns} \\ \bullet & 0 \ {\rm CLIC} \%_G, \ t_p = 483 {\rm ns} \\ \bullet & 0 \ {\rm CLIC} \%_G, \ t_p = 483 {\rm ns} \\ \bullet & 0 \ {\rm CLIC} \%_G, \ t_p = 483 {\rm ns} \\ \bullet & 0 \ {\rm CLIC} \%_G, \ t_p = 483 {\rm ns} \\ \bullet & 0 \ {\rm CLIC} \%_G, \ t_p = 483 {\rm ns} \\ \bullet & 0 \ {\rm CLIC} \%_G, \ t_p = 483 {\rm ns} \\ \bullet & 0 \ {\rm CLIC} \%_G, \ t_p = 6, \ {\rm L}_s = 230 {\rm nm}, \ t_p = {\rm free} \\ \bullet & - \ {\rm S}\pi/6: \ N_s = 6, \ {\rm L}_s = 480 {\rm nm}, \ t_p = {\rm 242 {\rm ns}} \\ \bullet & - \ {\rm S}\pi/6: \ N_s = 6, \ {\rm L}_s = {\rm 480 {\rm nm}, \ t_p = {\rm 242 {\rm ns}} \\ \bullet & - \ {\rm S}\pi/6: \ N_s = 6, \ {\rm L}_s = {\rm 480 {\rm nm}, \ t_p = {\rm 242 {\rm ns}} \\ \bullet & - \ {\rm S}\pi/6: \ N_s = 6, \ {\rm L}_s = {\rm 480 {\rm nm}, \ t_p = {\rm 242 {\rm ns}} \\ \bullet & - \ {\rm S}\pi/6: \ N_s = 6, \ {\rm L}_s = {\rm 480 {\rm nm}, \ t_p = {\rm 242 {\rm ns}} \\ \bullet & - \ {\rm S}\pi/6: \ N_s = 6, \ {\rm L}_s = {\rm 480 {\rm nm}, \ t_p = {\rm 242 {\rm ns}} \\ \bullet & - \ {\rm S}\pi/6: \ N_s = 6, \ {\rm L}_s = {\rm 480 {\rm nm}, \ t_p = {\rm 483 {\rm ns}} \\ \bullet & - \ {\rm S}\pi/6: \ N_s = 6, \ {\rm L}_s = {\rm 480 {\rm nm}, \ t_p = {\rm 483 {\rm ns}} \\ \bullet & - \ {\rm S}\pi/6: \ N_s = 6, \ {\rm L}_s = {\rm 480 {\rm nm}, \ t_p = {\rm 483 {\rm ns}} \\ \bullet & - \ {\rm S}\pi/6: \ N_s = 6, \ {\rm L}_s = {\rm 480 {\rm nm}, \ t_p = {\rm 483 {\rm ns}} \\ \bullet & - \ {\rm S}\pi/6: \ N_s = 6, \ {\rm L}_s = {\rm 480 {\rm nm}, \ t_p = {\rm 483 {\rm ns}} \\ \bullet & - \ {\rm S}\pi/6: \ N_s = {\rm 6}, \ {\rm L}_s = {\rm 480 {\rm nm}, \ t_p = {\rm 483 {\rm ns}} \\ \bullet & - \ {\rm S}\pi/6: \ {\rm N}_s = {\rm 6}, \ {\rm C}_s = {\rm 6}, \ {\rm C}_s$$

Case 2 has been chosen:

- As close as possible to 100 MV/m
- Cost considerations which were not included in the optimization
- Beam current in injectors is only ~2 times higher than for 3 TeV
- RF constraints for PETS are the lowest

Parameters of the structures

Case	3TeV nominal	500GeV conservative	
Structure	CLIC_G	CLIC_502	
Average accelerating gradient: <e<sub>a> [MV/m]</e<sub>	100	80	
rf phase advance: ∆φ[⁰]	120 150		
Average iris radius/wavelength: < <i>a</i> >/λ	0.11	0.145	
Input/Output iris radii: <i>a</i> _{1,2} [mm]	3.15, 2.35	3.97, 3.28	
Input/Output iris thickness: <i>d</i> _{1.2} [mm]	1.67, 1.00	2.08, 1.67	
Group velocity: $v_g^{(1,2)}/c$ [%]	1.66, 0.83	1.88, 1.13	
N. of reg. cells, str. length: N _c , <i>l</i> [mm]	24, 229	19, 229	
Bunch separation: N_s [rf cycles]	6	6	
Luminosity per bunch X-ing: L_b [m ⁻²]	1.22 10 ³⁴	0.57 10 ³⁴	
Bunch population: N	3.72 10 ⁹	6.8 10 ⁹	
Number of bunches in a train: N_b	312	354	
Filling time, rise time: τ_f , τ_r [ns]	62.9, 22.4	50.3, 15.3	
Pulse length: τ_p [ns]	240.8	242.1	
Input power: <i>P_{in}</i> [MW]	63.8	74.2	
$P_{in}/Ct_{p}^{P_{1/3}}[MW/mm ns^{1/3}]$	18	17	
Max. surface field: E_{surf}^{max} [MV/m]	245	250	
Max. temperature rise: ΔT ^{max} [K]	53	56	
Efficiency: η [%]	27.7	39.6	
Figure of merit: $\eta L_b / N$ [a.u.]	9.1	3.3	

Alexej Grudiev, Accelerating structures.

IC

Alternative HOM damping

- Choke mode cavity
- Damped Detuned Structure

Magnetic field enhancement in WDS

NDS

WDS

Alternative Wakefield Suppression

- Alternate method entails heavy detuning and moderate damping of a series of interleaved structures (known as CLIC_DDS). This is a similar technique to that experimentally verified and successful employed for the NLC/GLC program.
 - Integration of Task 9.2 within NC WP 9 -anticipate test of CLIC_DDS on modules
- Potential benefits include, reduced pulse temperature heating, ability to optimally locate loads, built-in beam and structure diagnostic (provides cell to cell alignment) via HOM radiation. Provides a fall-back solution too!
- Initial studies encouraging. However, the challenge remains to achieve adequate damping at 0.5 ns intra-bunch spacing

Roger M. Jones, Vasim F. Khan

4th CLIC Advisory Committee (CLIC-ACE), 26th - 28th May 2009

Technology alternatives Quadrant - set a side for the moment Brazed Disks Single rounded cell Double rounded cell

TD24_vg1.8_disk transverse wake

CLIC

Structure	CLIC_G	TD24
Frequency: f [GHz]	12	12
Av. iris radius/wavelength: $\langle a \rangle / \lambda$	0.11	0.11
In/Output iris radii: <i>a</i> _{1,2} [mm]	3.15, 2.35	3.15, 2.35
In/Output iris thickness: d _{1,2} [mm]	1.67, 1.00	1.67, 1.00
Group velocity: $v_g^{(1,2)}/c$ [%]	1.66, 0.83	1.62, 0.81
N. of reg. cells, str. length: N_c , l [mm]	24, 229	24, 229
Bunch separation: N _s [rf cycles]	6	6
Lumi. per bunch X-ing: L_b [m ⁻²]	1.22 10 ³⁴	1.22 10 ³⁴
Bunch population: N	3.72 10 ⁹	3.72 10 ⁹
Number of bunches in a train: N_b	312	312
Filling time, rise time: τ_f , τ_r [ns]	62.9, 22.4	64.2, 23.1
Pulse length: τ_p [ns]	240.8	242.7
Input power: <i>P_{in}</i> [MW]	63.8	<u>66.0</u>
$P_{in}/Ct_{p}^{P_{1/3}}[MW/mm ns^{1/3}]$	18	18.6
S _c ^{max} [MW/mm ²]	5.4	5.6
Max. surface field: E_{surf}^{max} [MV/m]	245	240
Max. temperature rise: ΔT ^{max} [K]	53	<u>62</u>
Efficiency: η [%]	27.7	26.5
Figure of merit: $\eta L_b /N$ [a.u.]	9.1	8.7

Double rounded disk design

Double rounded disk design is under way

Alexej Grudiev, Accelerating structures.

Coupler alternatives Mode launcher coupler Electric coupler Magnetic coupler with damping

Mode launcher

Electric field coupler

Magnetic field coupler

Compact coupler

Alexej Grudiev, Accelerating structures.

CLIC_G + compact coupler

CLIC_G (electric coupler)

Ridged waveguide damping for lower pulse surface heating temperature rise

Alexej Grudiev, Accelerating structures.

EM field configuration in RWDS

CLIC Electromagnetic field configuration on the surface of a Ridged waveguide damped structure (RWDS) cell

Electric field

Magnetic field

Structures with ridged waveguide damping

CLIC_GLDT : *a* = 3.15 - 2.35 mm

CLIC-ACE, 26 May 2009

CERN

Transverse impedance

Parameters of the structures

Structure	CLIC_G	CLIC_GCC	CLIC_GCC non-rounded	CLIC_GLDT	CLIC_K
Frequency: f [GHz]	12	12	12	12	12
Average iris radius/wavelength: < <i>a</i> >/λ	0.11	0.11	0.11	0.11	0.113
Input/Output iris radii: a _{1,2} [mm]	3.15, 2.35	3.15, 2.35	3.15, 2.35	3.15, 2.35	3.3, 2.35
Input/Output iris thickness: d _{1,2} [mm]	1.67, 1.00	1.67, 1.00	1.67, 1.00	1.67, 1.00	1.67, 1.00
Group velocity: $v_g^{(1,2)}/c$ [%]	1.66, 0.83	1.66, 0.83	1.67, 0.84	1.68, 0.86	1.97, 0.86
N. of reg. cells, str. length: N _c , <i>l</i> [mm]	24, 229	25, 225	25, 225	25, 225	25, 225
Bunch separation: N_s [rf cycles]	6	6	6	6	6
Luminosity per bunch X-ing: L_b [m ⁻²]	1.22 10 ³⁴	1.22 10 ³⁴	1.22 10 ³⁴	1.22 10 ³⁴	1.28 10 ³⁴
Bunch population: N	3.72 10 ⁹	3.72 10 ⁹	3.72 10 ⁹	3.72 10 ⁹	3.94 10 ⁹
Number of bunches in a train: N_b	312	312	312	316	326
Filling time, rise time: τ_f , τ_r [ns]	62.9, 22.4	64.7, 22.4	63.8, 22.0	63.0, 21.6	58.4, 21.6
Pulse length: τ_p [ns]	240.8	242.6	241.4	242.1	242.5
Input power: <i>P_{in}</i> [MW]	63.8	59.8	61.5	61.3	64.6 (65.2)
$P_{in}/Ct^{P_{1/3}}[MW/mm ns^{1/3}]$	17.9	16.8	17.3	17.3	17.5
S _c ^{max} [MW/mm ²]	5.4	5.1	5.3	5.2	5.1
Max. surface field: E_{surf}^{max} [MV/m]	245	233	230	230	244
Max. temperature rise: ΔT ^{max} [K]	53	48	45	39	37 40
Efficiency: η [%]	27.7	28.8	28.1	28.5	29.5 (29.2)
Figure of merit: $\eta L_b / N$ [a.u.]	9.1	9.4	9.3	9.4	<u>9.6</u>

Alexej Grudiev, Accelerating structures.

LA