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e CLIC Study Strategy &

* Many critical issues exist for CLIC

* Due to limited resources we have addressed a subset, the most critical
issues

* In preparation of the CDR an extension of the work was necessary
— To cover known very critical items that were not yet addressed
— To ensure that we do not misse a very critical item

* Have produced a formal list of issues, divided into
— Feasibility issues, can be a showstopper

— Performance issues, can have severe impact on machine
performance

— Costissues, have strong impact on cost
» For CDR focus on feasibility issues
— Some work on other issues
* A plan for post CDR era is in preparation
— Will address many more issues
o will
— Shortly present list of critical issues
— Give very short reasoning for choice of feasibility issues
— Will not justify for all other item why they are not considered
feasibility issues
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List of issues contains more than 40 items in the areas

* Structures (accelerating and PETS)

* RF distribution

* Drive beam generation and use

» Two beam

* Beam Physics

* Magnet systems

* Vacuum systems

* Klystrons and modulators

* Dumps and collimators

* Injectors

* Pre-alignment

« Stabilisation

» Feedback and integration with stabilisation and alignment
* Instrumentation

» Operation, machine protection and reliability
* Detector infrastructure
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CLIC Feasibility Issues

SYSTEMS Critical parameters

Relevant Facilities

Lo.01 [arb. units]

CTF2&3 (2005-2010)
Main Beam Acceleration Structures: mfa'::! m Test Stand (2009-10)
nominal CLIC structures with damping features at the design gradient, <310.7 BR/(pulse*m) SLAC/NLCTA
8 with design pulse length and breakdown rate . RE to Beam emti':m 0% SLAC/ASTA
H v : KEK/NEXTEF
H RF Power production structures: 136 MW, 240 ns CTF3 (2005-2010)
|RF Power production structures:
" . . 5 <10-7 BR/(pulse*m)? CTF3/TBTS (2008-10)
Demonstrate nominal PETS with damping features at the design power, .
ith design pulse length, breakdown rate and on/off capabilit Beam to RF efficiency >2 CTF3/TBL (2009-10)
i gn pul sth, pabllity On/Off <20 ms SLAC/ASTA
e Two Beam Acceleration (TBA): ] ) Two Beam Acceleration with simultaneous & [
23 RF power and Beam with both beams in at nominal parameters as quoted above for (2002.10)
= least one Two Beam Module equipped with all equipments individual components
Drive Beam Production 100 Amp peak current CTF3 (2005-2010)
- Beam generation and combination 12GHz bunch repetition frequency CTF3/TBL (2009-10)
,Eﬂ - phase and energy matching 0.2 degrees phase stability at 12 GHz X-FEL
& - Potential feedbacks 7.510% intensity stability LcLs
@
2
H RE ion by Drive B -
s ower gensration by Drive Beam 90% extraction efficiency
- Rf power extration Large momentum spread CTF3/TBL
- Beam stability 8 P
9 ATF, SLS, NSLSII
e and ion of Low Emittances(nm): H= 600, V=5 Simulations
g% P P ) e _
&2 Damping Rings, RTML and Main Linacs Absolute blow-up(nm): H=160, V=15 L1, 5C55
= Main Linac : 1 nm vert. above 1 Hz; CESRTA
22 Main Linac and BDS Stabilization BDS: 0.15 to 1 nm above 4 Hz depending on final sy
=%
L doublet girder implementation
c  » |Operation and Machine Protection
£ g £ |[staging of commissioning and construction drive beam power of 72 MW @ 2.4 GeV .
§ 5L  |MTBF, MTTR main beam power of 13 MW @ 1.5 TeV/
S £ |Machine protection with high beam power
3 Beam-B
8 Detector design and shielding compatible with breakdown generated by beam 3.8 10° coherent pairs
3 beam effects during collisions at high Ene8hulte CLIC Overview and Critical Issues, ACE May 2009
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T Luminosity
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Parameter Choice

Horizontal beam size is dominated by

» damping rings, beam delivery system and RTML

Vertical beam size is dominated by

» damping rings, RTML, main linac, beam delivery system, collision point
Structures prefer small iris radius a to reach high field

* but gives an upper limit to the charge

Complex optimisation procedure

Asked ourselfs two questions

» How much do we loose if we use more conservative parameters for
emittance and beam sizes at 3TeV?

* How does a 500GeV machine perform that is optimised for more
conservative parameters?
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Parameters

— m TN

CLIC(cons) | CLIC(nom) | CLIC(cons) | CLIC |CLIC(vo)| ILC | NLC
Ecms [TeV] 0.5 0.5 3.0 3.0 3.0 05 | 05
frep [Hz] 50 50 50 50 100 5 | 120
ny 354 354 312 312 154 2820 | 190
0, [nm] 248 202 83 40 40 655 | 243
o, [nm] 5.7 2.26 1 1 1 57 | 3
. [ )] 72 72 45 45 35 300 | 110
At [ns] 0.5 0.5 0.5 0.5 0.67 | 340 | 1.4
N [109) 6.8 6.8 3.7 37 4.0 20 | 75
€, [ pm) 3.0 24 24 0.66 0.68 10 4
€ [nm] 40 25 20 20 10 40 | 40
Ly |[10%em 2577 0.88 23 2.7 5.9 10.0 20 | 20
Looi |[10%em %7 0.58 1.4 1.3 2.0 3.0 1.45 | 1.28
n, 1.1 1.3 1.2 22 23 1.30 | 1.26
AE/E 0.045 0.07 0.13 0.29 0.31 [0.024 |0.046
Neoh [10%) 104 1079 5x 102 |38x10° ? — -
[10°TeV) 0.001 0.015 4x 10" [2.6 x 10° ? - -
[109] 0.03 0.08 0.11 0.3 ? 01 | na
[105GeV] 0.14 0.36 7.2 22.4 ? 0.2 | na.
8 20.5 19 45 60 28 | 12
Npad 0.07 0.19 0.75 2.7 4.0 0.12 | 0.1
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ot Longrange Wakefields
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« Important limit is given by 1.5 _ real, analyt.
the longrange wakefield 2 1 imag., analyt.
o For point-like bunches can x
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e Require ;. a,; < 1.5
o Full effect is A = exp(a)
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bunch offsets is up to
Ae, 5~ 5y
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| ~~_ Main Linac Accelerating Structures

The structure is an important driver of the parameter choice with large
impact on energy and luminosity

— Technological challenge

— Large impact on cost
Do not understand the gradient and pulse length limitations from first
principle

— Have an empirical model, which has improved very much

— But experimental confirmation is vital
Focus on gradient, pulse length, breakdown rate and efficiency
Other issues are also important

— Longrange wakefield damping is crucial

+ Failure to damp longrange modes will reduce efficiency due to
larger bunch spacing

— Wake monitors are very important

» Single bunch emittance growth could become large
— Structure tolerances, e.g. bookshelfing

» Can lead to significant single bunch emittance growth
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Emittance Preservation at 500GeV

The 500 GeV CLIC Main Beam normalized rms emittances in [nm.rad]
e BC2 1P
¢ BC2 -

H =300
V=40 —
/ H=2400 / \ /
v=10 ¢ V=25
g Blue = conservative
i Red = nominal
H =2400 ) 2
V=10 !
>
H = 1800 / N
v=s - ¢ BCl ¢ BC1 —
¢ DR e DR )
[ePDR
| o ‘.“ e
H=v=101] | £ | [H=v=3x101
[
H=V= 1013( 5 H =V= 3x10"!
g
8
£
Primary beam
Linac for & AN DC gun
—#— . P Tolicde
ely v Pre-injector re-tnjector
Target Target Linac for ¢ Linac for ¢

D. Schulte CLIC Overview and Critical Issues, ACE May 2009



| ~=_) Emittance Preservation at 3TeV
The 3 TeV CLIC Main Beam normalized rms emittances in [nm.rad)
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Low Emittance Transport

Challenges for lattice design (mainly in BDS and RTML)
« (coherent) synchrotron radiation in bunch compressors and turn-arounds
« for BDS synchrotron radiation and chromaticity at IP
« BDS is basically ready
* has been a major effort
« Still some work for the RTML
Vacuum challenges (fast beam-ion instability)
« excellent vacuum required and possible everywhere (O(0.1ntorr))
« except in main linac few ntorr possible and probably sufficient
Challenges from static imperfections
« imperfect pre-alignment, component errors, ...

» Mainly studied for main linac, not fully sufficent solution for the BDS, some work done
for RTML

* no system should require better pre-alignment than main linac
Dynamic imperfections
« ground motion, technical noise, RF jitter, ...

» Feedback design for main linac exists but integrated study is needed
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Emittance targets are very
ambitious

« vertical emittance is not too
far from what has been
reached in light sources

* horizontal emittance is very
small for the bunch bunch
charge

« |attice design is tough
* wigglers are needed

* IBS is the most important
source of emittance

« currently rely on semi
analytical estimates

* program is being
develop

Low Emittance Generation

Vertical Emittance ([lm)

Normalised r.m.s. Emittances at Damping Ring Extraction

¢
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Horizontal Emittance ([im)
* Many other issues in the damping ring

* wigglers (design, integration and
performance)

« electron cloud

« fast beam ion instability

D. Schulte CLIC Overview and Critical Issues, ACE May 2009

D)

Low Emittance Preservation

Challenges from lattice design in BDS and RTML

* (coherent) synchrotron radiation, chromaticity at IP

» BDS is basically ready (major effort), still some work for the RTML

Fast beam-ion instability in main linac

Challenges from static imperfections

» Main linac short range pre-alignment tolerances for 1nm emittance growth
using one-to-one steering show that more advanced beam-based correction

techniques are needed Element error with respect to tolerance
CLIC NLC
Structure offset beam 5.8 um 5.0 pm
Structure tilt beam 220 pradian | 135 pradian
Quadrupole offset straight line — —
Quadrupole roll axis 240 pm 280 pradian
BPM offset straight line 0.44 pm 1.3 pm
BPM resolution | BPM center 0.44 pm 1.3 um

Dynamic imperfections

* element jitter, ground motion, RF jitter ...

* needs stabiolisation and beam-based feedback/feedforward
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| “..— Static Imperfections in Main Linac  [@] ( ) Dynamic Imperfections @]
imperfection with respect to | symbol value emitt. growth « In main linac 1.8nm quadrupole 1.02
BPM offset wire reference | oppy 14 ym 0.367 nm jitter leads to 1% luminosity loss 1
BPM resolution Ores 0.1 pum 0.04 nm * For structure have micro-metres 0.98
accelerating structure offset girder axis o4 10 um 0.03nm 0.96 .
accelerating structure tilt girder axis o, |200puradian| 0.38nm * AtIP quadrupole jitter tolerance o 094 X ¢ H
articulation point offset | wire reference | o3 12 pym 0.1nm depends on configuration J oep o X
girder end point articulation point | o 5pm 0.02nm ° Beam-bean; jitter tolerance is 09 X X><
wake monitor structure centre | o 5 pum 0.54 nm sztn”l flor 2% Iumng)ogntg '70236 0.88
quadrupole roll longitudinal axis or 100 gradian | = 0.12nm Jitter tolerance I (0.5)0.7-3. 0.86
times beam-beam tolerance 0.17- 0.84
100 no bumps 85nm ’ 04 0.2 0 0.2 0.4
Multi-bunch wakefield mi s‘bzlr‘nfgg * Intra-pulse interaction point Ay [nm]
¢ Vut-ounch waxetield mis- 8 5 bumps ' feedback can help (for 40ns latency
alignments of 10 um lead to _ 7 bumps
Ae. ~ 0.130m S P up to factor 2)
y &0 = 60 o A = —F//—F=
3 « Parasitic crossing tighten tolerance
. Pgrformanpe of local pre- ‘,"\: 20 (0(10%)) : :
alignment is acceptable & + +
e More tuning in reserve 20 : . $ ¢ t i
= pre-alignment stays se- e t + + $
vere performance issue 0 — = -
10 12 14 16 18 20
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PETS

« PETS are a unique type of structure

— Can profit much less from existing expertise
* Very high output power

— Need to understand breakdown issues

— Efficiency of power extraction
« Beam current is very high o If mech_anism fails may have to open for intervention or to reduce gradient in a
whole drive beam sector

PETS On/Off Mechanism

The on/off mechanism is vital for CLIC, need a large number (70,000)

* Beam pulses with break are lost for luminosity (working assumption), so need to
switch off structures

— Longrange wakefields can be very important
- Damping is needed * Need to avoid too many unwanted switches to off
— Small amplitude trapped modes can become dangerous
» We had designs where this was the case
» Operational considerations are vital
— How can we switch off a main linac structure?
— Do we need to switch off PETS itself?
+ Technical issues, e.g. tight tolerances
+ Cost, they are complex and we have lots of them
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Drive Beam Generation

® The drive beam generation complex is a novel concept so principle needs
demonstration. It also has a number of specific issues

* e.g. needs to provide required beam quality for decelerator, i.e. coherent
phase stability of 0.2° at 12GHz and current stability of 0.075%

* Many issues can be addressed in CTF3
* general principle (no bad surprises)
« functioning according to our understanding
* RF to beam power efficiency
« single particle dynamics, e.g. isochronicity of combiner rings
« instabilities, e.g. drive beam accelerator, RF deflectors
» power generation with drive beam (TBTS, TBL)
« test of tuning algorithms
« technology development (e.g. instrumentation)
» Other issues need to be addressed sperately, e.g.
+ concept and hardware to ensure phase stability
* beam dynamics th3HGE-HELFEBRAfT@Kksues: ACE May 2009

Phase Stability

* In each decelerator, the 8 ‘
same drive beam bunches 7r + ]
produce the RF power for a 6 1
main beam bunch 5|
« The BDS bandwidth is & 4t n
limited S 3t
<

» Tight tolerances exist on 2 r
the main beam energy error 1t |
» Hence tight tolerances on or m
the drive beam phase and -1 . . . . . ‘ ‘
amplitude 0 0.1 02 03 04 05 06

0.
« Errors can be coherent %[
from decelerator to

2 . 2
decelerator or not AL 0.01 (%’c"h) + (UW"C)
L 0.2° 0.8°

» Emittance growth due to
RF jitter can become
relevant but remains at the
same level

+ (0.7;-Gi05’130)2 * (2.20-G1’5nf3a)2}
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CLIC*

Very different from other beam lines

Have 48 decelerators that must
work simultaneously

Beam stability and losses are critical
« Large power

« Large beam energy spread

« Large emittance/beam size

{ STABILITY
saf ‘ ANALYSIS

(10sigma acceptance at the end) \ N u = i
NOT OK? | NA] -
Verification by \l/OK E. Adli and D. Schulte
PETS BASELINE DESIGN

» Experimental programme (CLICPARAMS 2008] T Suraehov. 0. Sehult. £ Adl ana .

“High RF Power Production for CLIC",
Proceedings of PAC 2007

» Simulations <

Trapped modes can be important ¢

Drive Beam Decelerator

Taborell]

« Had structures that would have
destroyed the beam

Beam-based alignment is a
challenge
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Two Beam Acceleration/Main Linac Module

Demonstration of two-beam acceleration with test beam verifies that
» we have a full understanding of relevant issues

» we can master the technological challenges

» components can be put together

Module is specific for
CLIC

Has a significant impact
on cost

« directly due to
components
* impact on tunnel

Defines boundary
conditions for technical
solutions for important
systems, e.g. accelerating
structures, PETS and
on/off mechanism,
stabilisation, alignment,
vacuum, ...

Will provide an integrated design of the module
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Conditions for Experiments

Physics and detector
isuses are addressed by
a working group, we
contribute to the MDI and
background data

Have to prove that we can do good physics
* luminosity spectrum quality

» machine and physics background

Has impact on design choices

* Crossing angle

» Spent beam extraction

Topics

* crossing angle - baseline exists

« vertex detector design - baseline exists
« forward detector design - in work

» machine background - in work

« final quadrupole and stabilisation - in
work

« intra-pulse IP feedback - irpw@rl cLic overview and Critical Issues, ACE May 2009

Conclusion

* Have developed a list of critical issues
— ldentified the feasibility issues from the list
* These are addressed with very high priority
— CTC to verify that other issues are not
feasibility issues
» Work started
— Some other topics are being addressed
» Necessary for conceptual design
» High impact on cost
* Boundary conditions for feasibility studies
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( ~~-) Machine Protection and Reliability

* Main and drive beam have a high damage potential
— Significant charge
— Small emittances

» Acceptance at drive beam decelerator end is about
10 sigma

» Passive and active protection is required

— Passive system poses design challenges, e.g.
collimation system

— Active system can compromise luminosity
* Some points have been considered

— Collimation system in BDS

— On/off in PETS in decelerator
+ But systematic identification of issues is remaining
* An the cures
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