Pre-Alignment and Stabilisation Needs for CLIC

D. Schulte

- Emittance preservation target and lattice design
- Static imperfections

modelling, beam-based alignment, tolerances

• Dynamic imperfections

modelling, beam-based alignment, tolerances

CLIC ACE May 2009

Low Emittance Transport Challenges

- Main linac is a most important source of emittance growth, is closely linked to the technology and imperfections have been studied in some detail
 - it is anticipated that we will not allow for tighter specifications elsewhere
 - but remains to be confirmed
- Static imperfections

errors of reference line, elements to reference line, elements...

pre-alignment, lattice design, beam-based alignment, beam-based tuning

• Dynamic imperfections

element jitter, RF jitter, ground motion, beam jitter, electronic noise,...

lattice design, BNS damping, component stabilisation, feedback, re-tuning, realignment

- Vertical main linac emittance budget
 - $\Delta \epsilon_y \leq 5 \, \mathrm{nm}$ for dynamic imperfections
 - $\Delta \epsilon_y \leq 5 \, \mathrm{nm}$ for static imperfections (90% probability)
 - horizontal budget 6 times larger (\rightarrow tolerances 2.5 times larger)

Lattice Design

- Used $\beta \propto \sqrt{E}$, $\Delta \Phi = \text{const}$
 - balances wakes and dispersion
 - roughly constant fill factor
- \bullet Total length about 21 $\rm km$
 - fill factor about 78.6%
- 12 different sectors used
- Matching between sectors using 7 quadrupoles to allow for some energy bandwidth
- Single bunch stability ensured by BNS damping
- Multi-bunch coherent offset leads to phase shift of 90° at linac end
- Bunch-to-bunch offset amplification shown

Alignment Model

Alignment Model (cont)

Alignment Model (cont)

imperfection	with respect to	symbol	target value
BPM offset	wire reference	σ_{BPM}	$14\mu{ m m}$
BPM resolution		σ_{res}	0.1 μm
accelerating structure offset	girder axis	σ_4	10 $\mu { m m}$
accelerating structure tilt	girder axis	σ_t	200 μ radian
articulation point offset	wire reference	σ_5	12 $\mu { m m}$
girder end point	articulation point	σ_{6}	$5\mu\mathrm{m}$
wake monitor	structure centre	σ_7	$5\mu{ m m}$
quadrupole roll	longitudinal axis	σ_r	100 μ radian

Beam-Based Alignment and Tuning Strategy

- Make beam pass linac
 - one-to-one correction
- Remove dispersion, align BPMs and quadrupoles
 - dispersion free steering
 - ballistic alignment
 - kick minimisation
- Remove wakefield effects
 - accelerating structure alignment
 - emittance tuning bumps
- Tune luminosity
 - tuning knobs

Beam-Based Structure Alignment

- Each structure is equipped with a wakefield monitor (RMS position error $5 \,\mu m$)
- Up to eight structures on one movable girders
- \Rightarrow Align structures to the beam
 - Assume identical wake fields
 - the mean structure to wakefield monitor offset is most important
 - in upper figure monitors are perfect, mean offset structure to beam is zero after alignment
 - scatter around mean does not matter a lot
 - With scattered monitors
 - final mean offset is σ_{wm}/\sqrt{n}
 - In the current simulation each structure is moved independently
 - A study has been performed to move the articulation points

- For our tolerance $\sigma_{wm} = 5 \,\mu m$ we find $\Delta \epsilon_y \approx 0.5 \, nm$
 - some dependence on alignment method

Final Emittance Growth

imperfection	with respect to	symbol	value	emitt. growth
BPM offset	wire reference	σ_{BPM}	$14\mu{ m m}$	$0.367\mathrm{nm}$
BPM resolution		σ_{res}	0.1 $\mu { m m}$	$0.04\mathrm{nm}$
accelerating structure offset	girder axis	σ_4	10 $\mu{ m m}$	$0.03\mathrm{nm}$
accelerating structure tilt	girder axis	σ_t	200 μ radian	$0.38\mathrm{nm}$
articulation point offset	wire reference	σ_5	12 $\mu\mathrm{m}$	$0.1\mathrm{nm}$
girder end point	articulation point	σ_6	$5\mu{ m m}$	$0.02\mathrm{nm}$
wake monitor	structure centre	σ_7	$5\mu{ m m}$	$0.54\mathrm{nm}$
quadrupole roll	longitudinal axis	σ_r	100 μ radian	$pprox 0.12\mathrm{nm}$

- Selected a good DFS implementation
 - trade-offs are possible
- Multi-bunch wakefield misalignments of $10 \,\mu m$ lead to $\Delta \epsilon_y \approx 0.13 \, nm$
- Performance of local prealignment is acceptable

Wire System Misalignment Modelling

- Received a number of misalignments from Thomas Touzé
- Used 50 seeds for each error set
- Switched from one wire 1 to 2 at end point of 1 and back to 1 at end point of 2
- Used linear interpolation in between wire endpoints
 - no sag error
 - no error of geoid

Wire System Results and Further Work

- Different number of pits have been simulated
 - \Rightarrow seem to make little difference
- Different wire monitor accuracies have been studied
 - ⇒ makes a significant difference

- wire length no of pits $\Delta \epsilon_y$ [nm] case sensor accuracy 1a 403.2 7 **20** µm 0.09 1b 403.2 7 $5\,\mu\mathrm{m}$ ≈ 0.01 2 400 2a $5\,\mu\mathrm{m}$ ≈ 0.01 3 2b 400 $5\,\mu\mathrm{m}$ ≈ 0.01 6 2c 400 $5\,\mu\mathrm{m}$ ≈ 0.01
- Results with current model are acceptable
- More imperfections need to be included as they become available
 - systematic error of sensors
 - wire sag
 - geoid

- . . .

Dynamic Imperfections

- Important is the multi-pulse emittance
- Counteract dynamic effects by
 - fast component stabilisation (between pulses)
 - beam-based orbit feedback
 - longitudinal feedback
 - slow component stabilisation (e.g. temperature drifts)
 - beam tuning
 - beam-based alignment when needed
 - repetition of pre-alignment
- Do not have a model of the imperfections
 - some models for ground motion
 - technical noise is not yet available
 - transfer by girder is not yet available (some model of the magnet exists)
 - impact of stabilisation feedback is not yet available
 - \Rightarrow so we derive some specifications

Dynamic Imperfections

- Luminosity loss is part of the emittance budget
- But limit luminosity fluctuation to less than 10%
 - total luminosity fluctuation is not straightforwad

Source	budget	tolerance
Damping ring extraction jitter	0.5%	kick reproducibility $0.1\sigma_x$
Transfer line stray fields	?%	data needed
Bunch compressor jitter	1%	
Quadrupole jitter in main linac	1%	$\sigma_{jitter} \approx 1.8 \mathrm{nm}$
RF amplitude jitter in main linac	1%	0.075% coherent, $0.22%$ incoherent
RF phase jitter in main linac	1%	0.2° coherent, 0.8° incoherent
RF break down in main linac	1%	$rate < 3 \cdot 10^{-7} m^{-1} pulse^{-1}$
Structure pos. jitter in main linac	0.1%	$\sigma_{jitter} \approx 880 \mathrm{nm}$
Structure angle jitter in main linac	0.1%	$\sigma_{jitter} \approx 440 \mathrm{nradian}$
Crab cavity phase jitter	2%	$\sigma_{\phi} \approx 0.017^{\circ}$
Final doublet quadrupole jitter	2%	$\sigma_{jitter} \approx 0.17(0.34) \mathrm{nm}$ – $0.85(1.7) \mathrm{nm}$
Other quadrupole jitter in BDS	1%	
	?%	

 \Rightarrow Long list of small sources adds up

 \Rightarrow Impact of feedback system is important

Beam-Beam Jitter Tolerance

- Beam-beam vertical jitter tolerance for 2% luminosity loss is 0.3 nm for rigid bunches
- Inclusion of beam-beam effects finds almost the same values
 - 0.28 nm yields 2.2%
- Tolerance does not yet include impact of beambeam feedback
 - intra-pulse feedback
 - pulse-to-pulse feedback
- Parasitic kicks will decrease tolerance in multibunch case by about 10%

Final Doublet Jitter

- Support points are assumed to be independent
- Main effect is beam-beam offset at interaction point
- One support structure
 - relative tolerance on end points $\approx 3.6\sigma_{beam-beam}$
- Two support structures
 - relative tolerance of mid points $\approx 0.7 \sigma_{beam-beam}$
 - relative tolerance of end points $\approx 0.64\sigma_{beam-beam}$
- Four support structures
 - relative tolerance of mid points $\approx 0.5\sigma_{beam-beam}$
 - end points $\approx 0.7\sigma_{beam-beam}$

- \Rightarrow Single support seems excluded
- \Rightarrow Chose two or four
 - need to consider motion on support
- \Rightarrow Raw tolerance for quadrupole supports is $0.17-0.85 \,\mathrm{nm}$ depending on configuration
 - assuming independent support point jitter
- Integration of support and stabilisation system in detector is important to study

Feedback Studies

- No design for RTML feedback sofar
- Conceptual feedback exists for main linac
- Some studies for BDS exist but no full feedback concept
 - has to come for CDR
- Integrated feedback study is needed
 - most feedback acts on same beam property (orbit)
 - \Rightarrow have to share bandwidth or integrate into one controller
 - speed of feedback is critical
- Knowledge of the system response is critical for feedback speed
- Have foreseen studies of
 - modelling of ground motion
 - modelling of stabilisation feedback in main linac (BDS not clear)
 - BDS beam-based feedback design
 - beam-beased feedback controller design
 - main linac and BDS feedback performance with some inclusion of RTML

Intra-Pulse Interaction Point Feedback

- Simple beam-beam feedback based on deflection angle at IP
 - but want to include more information
- Beam-based feedback will demagnify beam-beam offset at certain frequencies but will amplify at others
- Intra-pulse feedback is dominated by latency
- \bullet Assuming $40\,\mathrm{ns}\,$ one can hope for about a factor 2
- Only cures offsets
- Currently not yet in the baseline
- Collaboration with JAI

Pulse-to-Pulse Tolerance with Feedback

- The frequency response of the feedback is controller dependent
- One can trade-off different properties
 - but within limits
- Simple feedback is shown

 $c_{n+1} = c_n + g_p R y_n$

- One case of use of recursive filter als shown
- BPM resolution of $1 \, \mu m$ will add luminosity loss of \approx 0.1%
- \Rightarrow Frequencies above $\approx 5 \, \mathrm{Hz}$ are not demagnified

 $\int_0^\infty db^2(f) \{ d^2(f) pg(f) + pn(f) \} df \le 0.17 \,\mathrm{nm}^2(0.34 \,\mathrm{nm}^2)$

Main Linac Fast Feedback Design

- \bullet No feedback leads to $0.5\,\mathrm{nm/s}$ with ATL (B) motion
 - ⇒ ground motion alone could be acceptable, but technical noise, supports...
- Main basis will be a fast BPM-based orbit feedback with single MIMO
- \bullet 1000 $\rm s$ $\,$ ATL motion and $\,$ 100 $\rm nm$ quadrupole jitter are shown
- Chose 41 BPM stations (8 BPMs each) and 40 corrector stations (2 correctors each)

Feedback Critical Issues

- Speed of convergence
 - stabilisation feedback fails at low frequencies
 - BPM resolution will be limiting
 - imperfect system knowledge
- Cross talk of imperfections
 - e.g. energy jitter via dispersion

$\Rightarrow \text{Full study}$

- different effects
- different areas
- different timescales
- One integrated feedback
 - clever feedback design
 - robust controller
 - adaptive controller

Model of the controlled system

 $\begin{array}{l} r_i \ \dots \ set \ value \ (0) \\ y_i, \ \dots \ BPM \ measurements \\ v_i \ \dots \ ground \ motion \\ n_i \ \dots \ BPM \ noise \end{array}$

 $u_i, u_{i+1} \dots$ controller state variables $x_i, x_{i+1} \dots$ plant state variables (QP position)

 $C(z) \dots Controller$ $G(z) \dots Plant$

thanks to Juergen

BPM Resolution and Corrector Step Size

- Assume pulse-to-pulse uncorrelated BPM readout jitter
 - For 100 nm resolution, the emittance growth is for $g = 1 \ \Delta \epsilon_0 \approx 0.1 \ \mathrm{nm}$
 - \Rightarrow little effect left for smaller gain g or better resolution
 - would like to resolve $0.1\sigma_y$ at end of main linac with
 - \Rightarrow ask to explore BPM resolution of about 50 nm
- Corrector step errors act like quadrupole jitter
 - assume use of 80 correctors simultaneously
 - $\sigma_{step} = 2 \text{ nm}$ leads to $\Delta \epsilon_y = 0.04 \text{ nm}$ in focusing quadrupoles
 - $\sigma_{step} = 3.6 \text{ nm}$ leads to $\Delta \epsilon_y = 0.04 \text{ nm}$ in defocusing quadrupoles
 - \Rightarrow require step size of $\Delta y = 5 \,\mathrm{nm}$ with precision $\sigma_{step} = 2 \,\mathrm{nm}$

Main Linac Mover Requirements

- Coarse mechanical motion
 - structure girders, quadrupoles and BPM support
 - range: $\approx 1 \,\mathrm{mm}$
 - resolution: $\Delta \approx 1 \, \mu m$
 - precision: $\approx 0.5 \,\mu \mathrm{m}$
 - speed: may take a few pulses, but controlled
- Fine quadrupole motion
 - resolution: $\Delta \approx 5 \,\mathrm{nm}$
 - range: $\approx 20 \, \mu \mathrm{m}$
 - precision: $\approx 2 \, \mathrm{nm}$
 - speed: from pulse to pulse
- Very fine quadrupole motion
 - resolution: $\Delta \approx 0.1 \,\mathrm{nm}$?
 - range and precision: tbd
 - speed: works in intervall between pulses
- Precision could be defined as function of step size

Conclusion

- \bullet Typical local alignment tolerances are of the order of $10\,\mu{\rm m}$
 - in particular BPM position and wake monitors
- The first results of wire reference system look very promising
 - more complete studies to follow
- Dynamic tolerances have been studied
 - but need a better model
 - produced some simple specifications sofar
- Feedback conceptual design is an important ingredient
 - main linac baseline feedback layout exists
 - BDS will follow soon
- Controler design
 - optimisation depends on noise model and feedback layout
 - knowledge of the system response is vital and is being studied
- Some resources are available for the beam dynamics work (J. Resta Lopez at JAI, J. Pfingstner (PhD student), J. Snuverink (fellow), fraction of DS)