Beam Delivery System: status and plans of R&D until CDR

R. Tomás, D. Angal-Kalinin, B. Dalena, L. Fernandez, F. Jackson, J. Resta, G. Rumolo, A. Seryi, P. Schuler and D. Schulte

CLIC ACE 2009

Contents

- New instrumentation: The polarimeter
- Preservation of emittances:
 - Transport aberrations
 - Failure to tune the FFS
 - ATF2

Resistive wall - Collective effects { Resistive wall Fast ion instability Collimator wakefields

- Machine protection:
 - Collimation systemm
- Plans towards CDR

Contents

- New instrumentation: The polarimeter
- Preservation of emittances:
 - Transport aberrations
 - Failure to tune the FFS
 - ATF2

Resistive wall - Collective effects { Fast ion instability Collimator wakefields

- Machine protection:
 - Collimation systemm
- Plans towards CDR

Contents

- New instrumentation: The polarimeter
- Preservation of emittances:
 - Transport aberrations
 - Failure to tune the FFS
 - ATF2
 - Collective effects {

Resistive wall Fast ion instability Collimator wakefields

- Machine protection:
 - Collimation systemm
- Plans towards CDR

The BDS

Polarimeter location & performance

Laser IP at 742 m and detector at 907 m. Relative polarization measurement error is 0.61% (for 1s).

BDS emittance "spoilers" by design

- CLIC BDS transport aberrations have been extensively minimized (MAPCLASS, extra non-linear elements, etc)
- Aberrations increase vertical IP beam size by 15%
- Synchrotron radiation reduces luminosity by 20%
- (in ILC these effects are below the 1%)

Vertical IP beam sizes and chromaticities

Project	Status	σ_y^* [nm]	ξ_y
FFTB	Measured	70	17000
ATF2	Commissioning	37	19000
ILC	Design	6	15000
ILC low power	Proposed	4	30000
CLIC	Design	1	63000

CLIC, the most challenging.

Imperfections as emittance "spoilers"

- $10\mu m$ transverse misalignments can decrease lumi by 10^{-6}
- 10⁻⁵ relative gradient error in QD0 decreases lumi by 0.94
- Tuning algorithms are fundamental!
- Can we tune the FFS using the Simplex to maximize lumi?

Current status of FFS tuning

80% of the cases reach 80% of the lumi in 18000 iterations.

Rogelio Tomás García

How to improve tuning performance?

- Use of more clever algorithms than the Simplex (presently on-going)
- Tune in a beta-squeeze sequence (like colliders)
- Relax the optics
- Andrei Seryi proposed a new optics with double L* to ease QD0 stabilization, let's see what happens

Comparing Andrei's FFS to CLIC nominal

CLIC nominal: L*=3.5m, β_y^* =0.07mm

Sensitivity to misalignments

Sensitivity to QD0 gradient error

Doubling L* increases sensitivity to gradient error by a factor of 2

QD0 specifications

	L*=3.5m	L*=8.0m
Gradient	575T/m	211T/m
Aperture (radius)	3.5mm	8.5mm
Outer radius	35mm	70mm
QD0 jitter	0.15nm	0.18nm
QD0 support	detector	ground
QD0 technology	PM	PM
QD0 grad tol.	5×10^{-6}	3×10^{-6}

A superconducting QD0 adds the extra challenge of stabilizing coils.

Tuning longer L* with better pre-alignment

Same tuning performance as for nominal by reducing pre-alignment a factor 5

Rogelio Tomás García

ATF2 ultra-low β proposal

- CARE/ELAN-2008-002 proposed a squeeze of the ATF2 IP β -functions by a factor of 4
- $\sigma_y \approx 20 \text{ nm}, \xi_y \approx 76000$
- ATF2 ultra-low β will experimentally prove CLIC-like aberrations and tuning algorithms.
- Beneficial for the ILC project, more in particular for the ILC low power option.
- This proposal was accepted
- Presently a CERN PhD working on this

Collective effects: Resistive wall

8mm Cu beam-pipe is enough to neglect resistive wall. Only QD0 has a smaller aperture.

Collective effects: Fast ion

Two sources:

- Scattering ionization
- Field ionization

10 nTorr seem enough to avoid fast ion instabilities.

Collective effects: Collimator wakefields

Assuming an initial jitter of 0.2σ wakefields peak lumi reduction is 20%. Open the collimator gaps?

Energy collimator (Be) survivability

Temperature raise after impact of a full train below melting level. (*different philosophy than ILC*)

Collimator gap scan

Acceptable collimation depths are between 10-15 σ_x and 44-55 σ_y .

Plans towards CDR

- CLIC 500 GeV lattice optimization (new CERN student on August)
- New tuning algorithms and knobs (help from SLAC, LAL, ATF2...)
- ATF2 ultra-low β progress (new CERN PhD since March and ILC)
- Review and optimization of collimation:
 - wakefields with new parameters (UK)
 - simulations including secondaries (UK)
- QD0 review (Detlef)
- Global feedback studies (new CERN fellow since May)

Some bonus points

- Luminosity measurement, fast and precise
 (?)
- Crab cavity phase specifications review (0.025° for 12 GHz) (A. Dexter ?)
- Post-IP polarization measurement (help from ILC?)
- 15mW beam dump (help from ILC?)

Stabilization to the 0.13nm

Ground isolation and resonance rejection works.