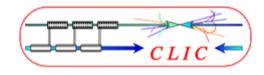
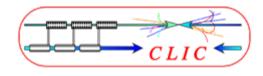

Cost-related issues

Philippe Lebrun

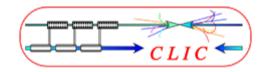
4th CLIC Advisory Committee CERN, 26-28 May 2009

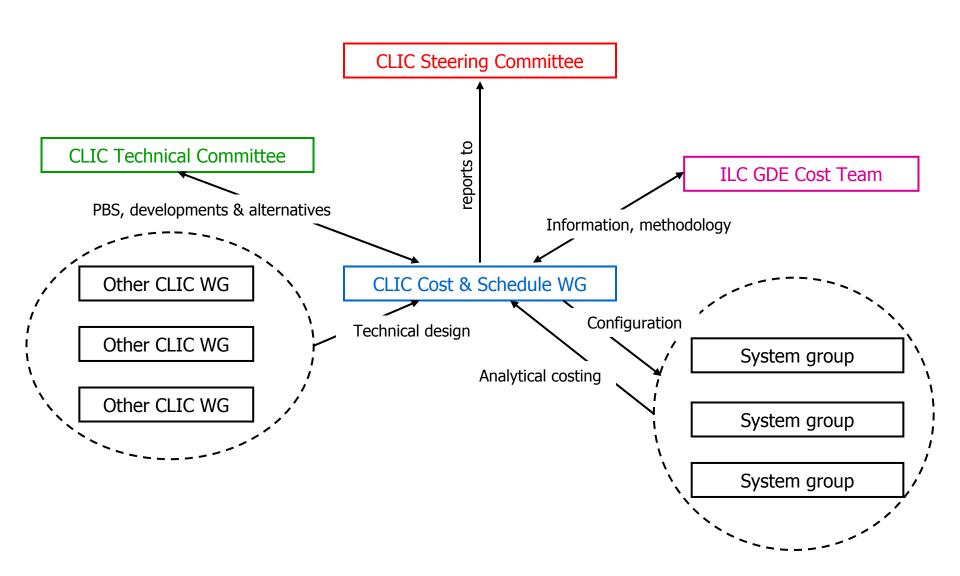


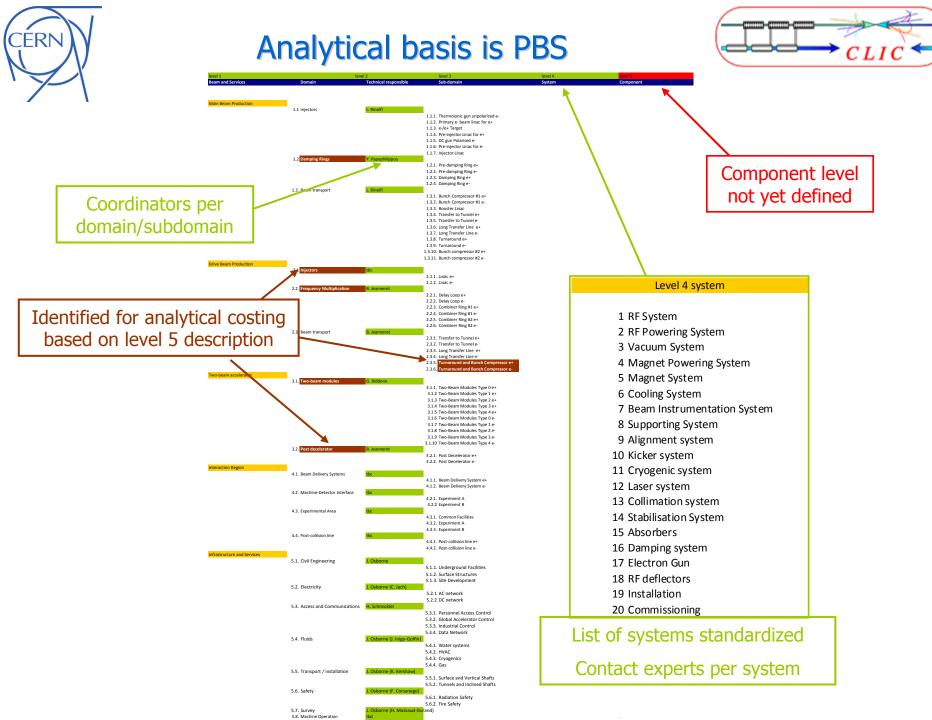
CLIC Cost & Schedule WG Mandate

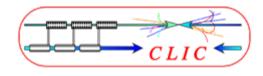

- Establish and optimize the cost of the CLIC complex at the nominal colliding beam energy of 3 TeV, as well as that of an optional first phase with a colliding beam energy of 500 GeV
- Define and optimize the general schedule for the 3 TeV and 500 GeV projects defined above
- Estimate the electrical power consumption of the 3 TeV and 500 GeV projects defined above
- Identify possible modifications of parameters and/or equipment leading to substantial capital and/or operational cost savings, in order to define best compromise between performance and cost
- Develop collaboration with ILC project on cost estimate methodology and cost of common or comparable systems, aiming at mutual transparency
- Document the process and conclusions in the CDR in 2010

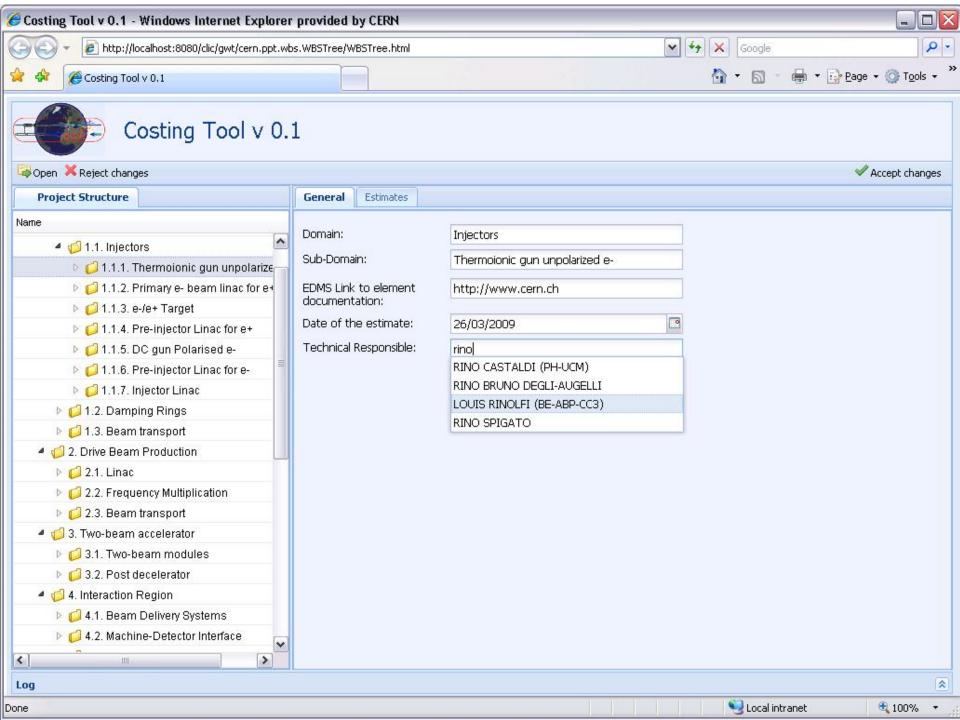
- Establish responsibilities, procedures & workpackages in cost assessment
- Identify domains of analytical costing and perform estimates
- Identify cost drivers and areas of potential cost reduction
- Reception specified cost tool, including currency conversion & price escalation procedures, and start applying it
- Conduct first round of analytical costing of CLIC 3TeV
- Establish proper technical/cost scaling of CLIC 500 GeV
- Refine general schedule and derive manufacturing/reception testing/installation constraints
- Update estimates of power & energy consumption, including part-load operation
- Collaborate with ILC on previously defined cost topics
 - Cost risk analysis
 - Cost of normal conducting magnets

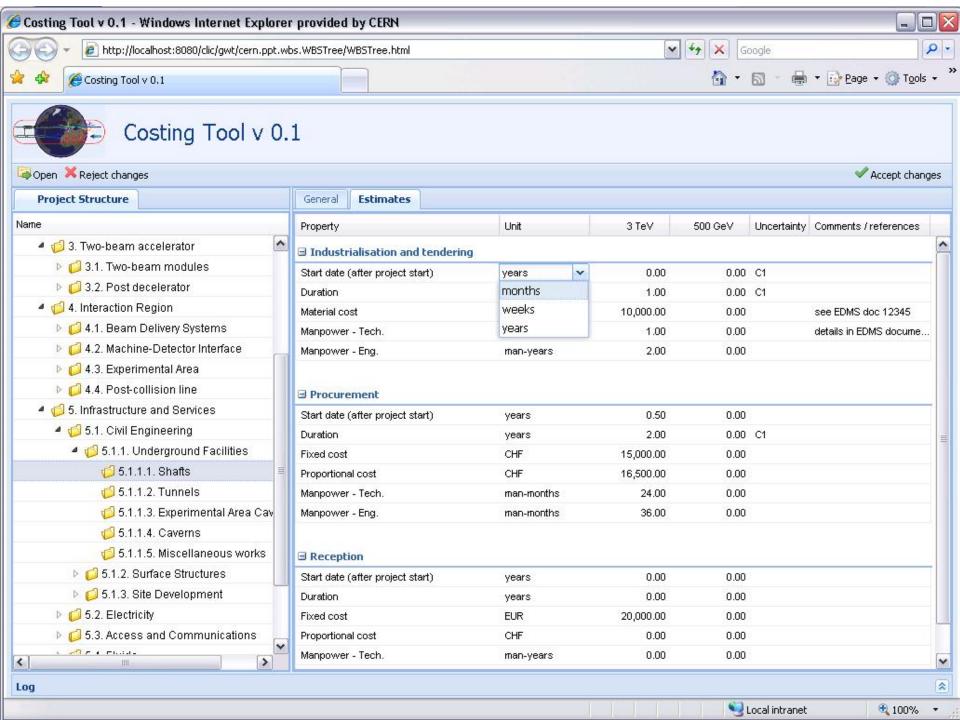


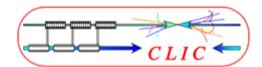


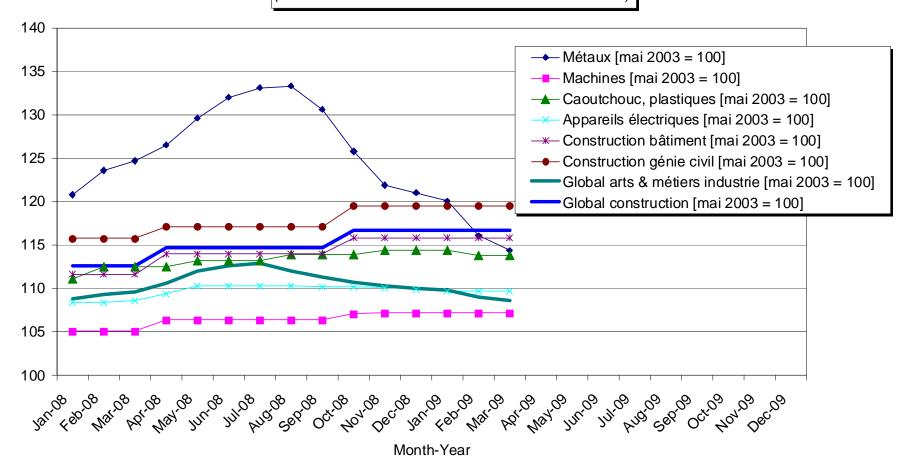

- Establish responsibilities, procedures & workpackages in cost assessment
- Identify domains of analytical costing and perform estimates
- Identify cost drivers and areas of potential cost reduction
- Reception specified cost tool, including currency conversion & price escalation procedures, and start applying it
- Conduct first round of analytical costing of CLIC 3TeV
- Establish proper technical/cost scaling of CLIC 500 GeV
- Refine general schedule and derive manufacturing/reception testing/installation constraints
- Update estimates of power & energy consumption, including part-load operation
- Collaborate with ILC on previously defined cost topics
 - Cost risk analysis
 - Cost of normal conducting magnets


CLIC Cost & Schedule WG Communication & reporting lines

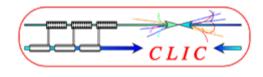





- Establish responsibilities, procedures & workpackages in cost assessment
- Identify domains of analytical costing and perform estimates
- Identify cost drivers and areas of potential cost reduction
- Reception specified cost tool, including currency conversion & price escalation procedures, and start applying it
- Conduct first round of analytical costing of CLIC 3TeV
- Establish proper technical/cost scaling of CLIC 500 GeV
- Refine general schedule and derive manufacturing/reception testing/installation constraints
- Update estimates of power & energy consumption, including part-load operation
- Collaborate with ILC on previously defined cost topics
 - Cost risk analysis
 - Cost of normal conducting magnets

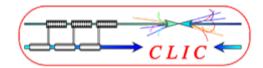


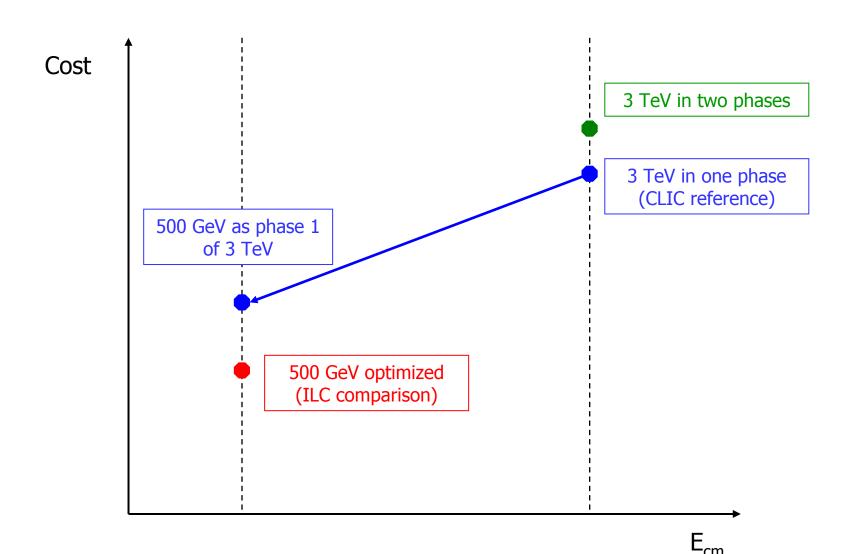
Industrial price indices (CH)



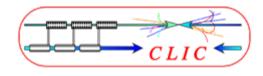
Indice des prix à la production, Suisse Source: Office Fédéral de la Statistique

(Indices de la construction ramenés à mai 2003 = 100)

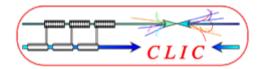




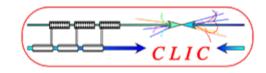
- Establish responsibilities, procedures & workpackages in cost assessment
- Identify domains of analytical costing and perform estimates
- Identify cost drivers and areas of potential cost reduction
- Reception specified cost tool, including currency conversion & price escalation procedures, and start applying it
- Conduct first round of analytical costing of CLIC 3TeV
- Establish proper technical/cost scaling of CLIC 500 GeV
- Refine general schedule and derive manufacturing/reception testing/installation constraints
- Update estimates of power & energy consumption, including part-load operation
- Collaborate with ILC on previously defined cost topics
 - Cost risk analysis
 - Cost of normal conducting magnets



Cost vs energy What are we comparing?



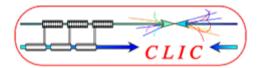
- Establish responsibilities, procedures & workpackages in cost assessment
- Identify domains of analytical costing and perform estimates
- Identify cost drivers and areas of potential cost reduction
- Reception specified cost tool, including currency conversion & price escalation procedures, and start applying it
- Conduct first round of analytical costing of CLIC 3TeV
- Establish proper technical/cost scaling of CLIC 500 GeV
- Refine general schedule and derive manufacturing/reception testing/installation constraints
- Update estimates of power & energy consumption, including part-load operation
- Collaborate with ILC on previously defined cost topics
 - Cost risk analysis
 - Cost of normal conducting magnets

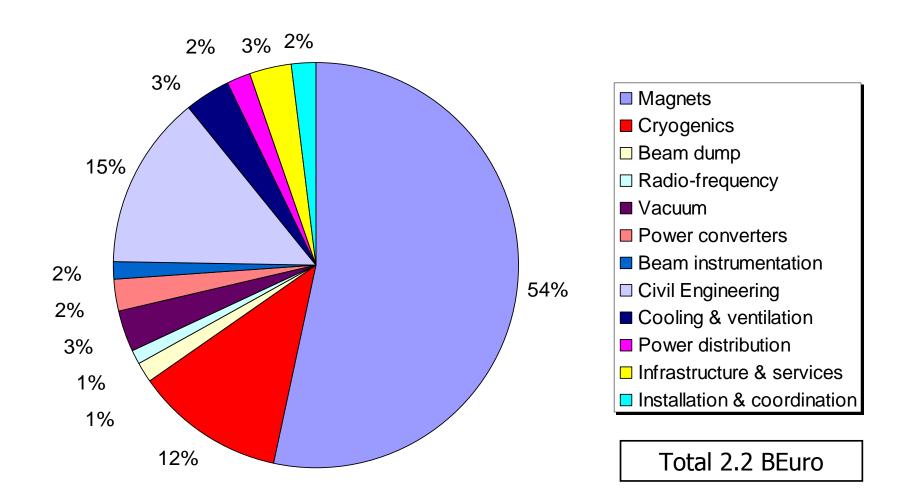

DOE cost risk assessment method

WBS Element # Element Name Design Risk (check one of 4): (from RSVP at BNL, similar for US CMS, NCSX)	Risk	
Design Risk (check one of 4): (from RSVP at BNL, similar for US CMS, NCSX)	Facto	r Weigh
Concept only	15%	1
Conceptual Design Phase: some drawings; many sketches	8%	1
Preliminary Design > 50 % complete; some analysis complete	4%	1
Detailed Design > 50% Done	0%	1
Technical Risk (check one of 8 and answer Yes or No to two questions):		
New design; well beyond current state-of-the art	15%	2 or 4
New design of new technology; advances state-of-the art	10%	2 or 4
New design; requires some R&D but does not advance the state-of-the-art	8%	2 or 4
New design; different from established designs or existing technology	6%	2 or 4
New design; nothing exotic	4%	2 or 4
Extensive modifications to an existing design	3%	2 or 4
Minor modifications to an existing design	2%	2 or 4
Existing design and off-the-shelf hardware	1%	2 or 4
Yes/No – does this element push the current state-of-art in Design?		either = 2
Yes/No – does this element push the current state-of-art in Manufacturing?		both $= 4$
Cost Risk (check one of 8 and answer Yes or No to two questions):		
Engineering judgment	15%	1 or 2
Top-down estimate from analogous programs	10%	1 or 2
In-house estimate for item with minimal experience and minimal in-house capability	8%	1 or 2
In-house estimate for item with minimal experience but related to existing capabilitie	s 6%	1 or 2
In-house estimate based on previous similar experience	4%	1 or 2
Vendor quote (or industrial study) with some design sketches	3%	1 or 2
Vendor quote (or industrial study) with established drawings	2%	1 or 2
Off-the-shelf or catalog item	1%	1 or 2
Yes/No – are the material costs in doubt?		either = 1
Yes/No – are the labor costs in doubt?		both $= 2$
Schedule Risk (check one)		
Delays completion of critical path subsystem item	8%	1
Delays completion of non-critical path subsystem item	4%	1
No schedule impact on any other item	2%	1
Prepared by: date:		

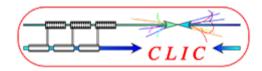
Cost variance factors (assumed statistically independent)

- Evolution of configuration
 - Maturity of design
 - Technology breakthroughs
 - Variation of applicable regulations
- Technical execution
 - Off-the-shelf or special product
 - Qualification & experience of vendors
 - State of completion of R&D, of industrialization
 - Series production, automation & learning curve
 - Rejection rate of production process
- Structure of market
 - Mono/oligopoly
 - Mono/oligopsone
- Commercial strategy of vendor
 - Market penetration
 - Competing productions
- Inflation and escalation
 - Raw materials
 - Industrial prices
- International procurement
 - Exchange rates
 - Taxes, custom duties

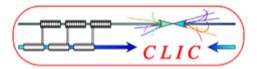

Engineering judgement of project team

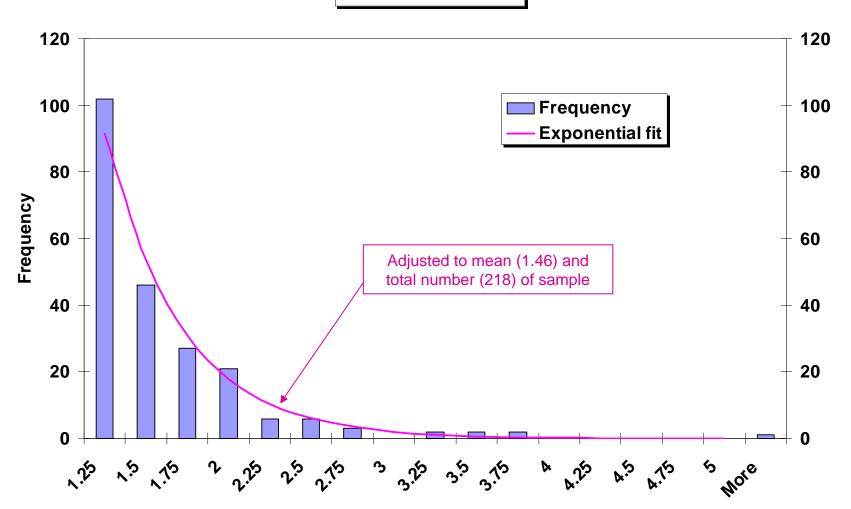

Reflected in scatter of offers received from vendors (LHC experience)

Tracked and compensated

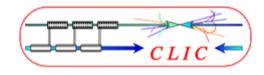

LHC cost structure (material)

LHC procurement 90 main contracts in advanced technology

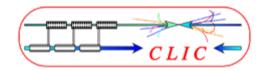

Scatter of LHC offers as a measure of cost variance


- <u>Available data:</u> CERN purchasing rules impose to procure on the basis of lowest valid offer ⇒ offers ranked by price with reference to lowest for adjudication by FC
- <u>Postulate:</u> scatter of (valid) offers received for procurement of LHC components is a measure of their variance due to technical, manufacturing and commercial aspects
- Survey of 218 offers for LHC machine components (48 contracts)
- Prices normalized to that of lowest valid offer, i.e. value of contract
- Exponential PDF fitted to observed frequency distribution with same mean value

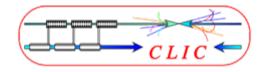
LHC tender prices for accelerator components


All data (218 offers)

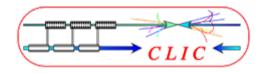
Tender price relative to lowest bid [bin upper limit]


From distribution of offers to distribution of prices

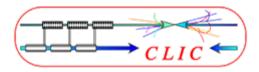
- Consider two valid offers X1, X2 following same exponential distribution with $P(Xi < x) = F(x) = 1 \exp[-a(x-b)]$
 - \Rightarrow m = b + 1/a and $\sigma = 1/a$
- Price paid (lowest valid offer) is Y = min(X1, X2): what is the probability distribution of Y?
- Estimate P(Y < x) = P(X1 < x or X2 < x) = G(x)
- Combined probability theorem
 P(X1<x or X2<x) = P(X1<x) + P(X2<x) P(X1<x and X2<x)
- If X1 and X2 uncorrelated, P(X1 < x and X2 < x) = P(X1 < x) * P(X2 < x)
- Hence, P(X1 < x or X2 < x) = P(X1 < x) + P(X2 < x) P(X1 < x) * P(X2 < x)and $G(x) = 2 F(x) - F(x)^2 = 1 - \exp[-2a(x-b)]$
 - \Rightarrow Y follows exponential distribution with m=b+1/2a and $\sigma=1/2a$
- By recurrence, if n uncorrelated valid offers X1, X2,...Xn are received, the price paid Y = min (X1, X2,...Xn) will follow an exponential distribution with m = b + 1/na and $\sigma = 1/na$


Dispersion on prices due to procurement uncertainties

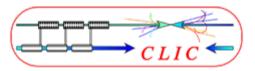
- For LHC accelerator components
 - 48 contracts
 - 218 offers, i.e. 4.54 offers per contract on average
- From exponential fit of statistical data on offers, m = 1.46, $\sigma = 0.46$
- We can therefore estimate the expected relative dispersion on paid prices $\sigma = 0.46/4.54 \approx 0.1$
 - ⇒ based on LHC experience, the relative standard deviation on component prices due to procurement uncertainties can be taken as 50/n %, where n is the expected number of valid offers

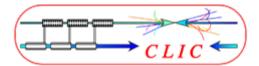

Towards a method for CLIC cost risk analysis

- Separate cost risk factors in three classes, assumed independent
 - Risk of evolution of configuration
 - Judgement of « domain responsible »
 - Rank in 3 levels, numerical values of σ_{config} tbd
 - Price uncertainty in industrial procurement
 - Estimate n number of valid offers to be received
 - Apply $\sigma_{industry} = 50/n \%$
 - Economical & financial context
 - Deterministic
 - Track currency exchange rates and industrial indices
- Estimate r.m.s. sum of σ_{config} and $\sigma_{industry}$
- Compensate economical & financial effects

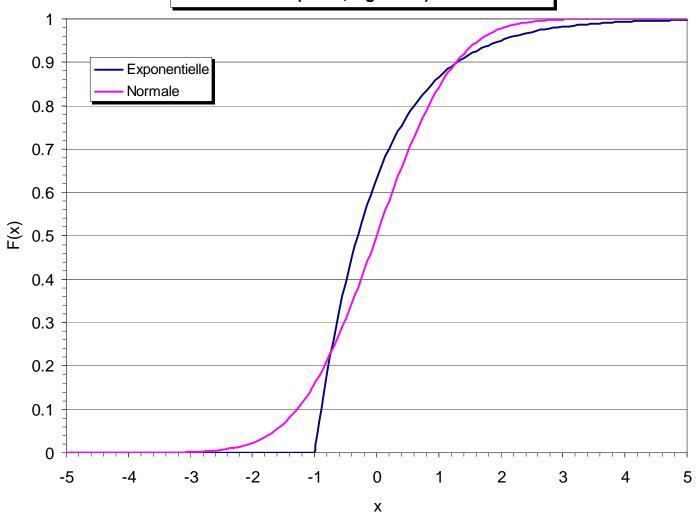


Summary


- CLIC Cost & Schedule (& Energy) WG reorganized
- CLIC Study Costing Tool launched
- Analytical costing exercise of CLIC 3 TeV started, based on updated PBS and expertise of PBS domain responsibles
- Refined definition of CLIC 500 GeV will allow parallel costing of this project phase
- Aim at first round by end 2009
- Identification of cost drivers and cost reduction issues
 - Feedback to technical design
 - Initiate specific studies
- Develop collaboration with ILC (TILC'09,...)
 - Exchange of information
 - Periodic WEBEX meetings
 - Cooperation on specific topics


- Heuristic considerations
 - things tend to cost more rather than less ⇒ statistical distributions of tender prices X_i are strongly skew
 - PDFs $f_i(x_i)$ are equal to zero for x_i below threshold values b_i equal to the lowest market prices available
 - commercial competition tends to crowd prices close to lowest \Rightarrow PDFs $f_i(x_i)$ are likely to be monotonously decreasing above threshold values b_i
- The exponential PDF is a simple mathematical law satisfying these conditions

$$f(x) = 0$$
 for $x < b$
 $f(x) = a \exp[-a(x-b)]$ for $x \ge b$


- Characteristics of the exponential law
 - only two parameters a and b
 - thresholdb
 - mean value m = 1/a + b
 - standard deviation $\sigma = 1/a = m b$
 - « mean value = threshold + one standard deviation »

Fonctions de distribution exponentielle et normale (m = 0, sigma = 1)

