



# CLIC Main Beam generation Baseline configuration only

L. Rinolfi

for the CLIC Injector complex team





<u>The CLIC Main Beams generation is focused on 3 studies to produce the bunch charge at</u> <u>the entrance of the Pre-Damping Ring (PDR) :</u>

## 1) Base Line configuration:

3 TeV (c.m.) - polarized electrons ( $4.4x10^9$  e<sup>-</sup>/bunch) and unpolarized positrons ( $6.7x10^9$  e<sup>+</sup>/bunch).

2) Polarized positron configuration: 3 TeV (c.m.) - polarized  $e^{-}$  and  $e^{+}$  with same charge as above

An huge R&D work is ongoing for polarized e<sup>+</sup> but not presented in this talk

#### 3) Double charge configuration:

500 GeV (c.m.) - polarized electrons ( $8x10^9 e^-$ /bunch) and unpolarized positrons ( $13x10^9 e^+$ /bunch).



CLIC ACE meeting

27<sup>th</sup> May 2009

L. Rinolfi



**CLIC Main Beam nominal parameters** 



## At the entrance of the Main Linac for e<sup>-</sup> and e<sup>+</sup>

|                                |        | NLC             | CLIC 2008          | CLIC 2008 | ILC       |
|--------------------------------|--------|-----------------|--------------------|-----------|-----------|
|                                |        | (1 TeV)         | (3 TeV)            | (0.5 TeV) | (0.5 TeV) |
| Ε                              | GeV    | 8               | 8                  | 8         | 15        |
| Ν                              | 109    | 7.5             | 4                  | 7         | 20        |
| n <sub>b</sub>                 | -      | 190             | 312                | 354       | 2625      |
| $\Delta t_b$                   | ns     | 1.4             | 0.5 (6 RF periods) | 0.5       | 369       |
| <i>t</i> <sub>pulse</sub>      | ns     | 266             | 156                | 177       | 968925    |
| ε <sub><i>x</i>,<i>y</i></sub> | nm, nm | 3300, 30        | 600, 10            | 2300, 10  | 8400, 24  |
| $\sigma_{z}$                   | μm     | 90-140          | 43 - 45            | 72        | 300       |
| $\sigma_{\!\!E}$               | %      | 0.68 (3.2 % FW) | 1.5 - 2            | 2         | 1.5       |
| $f_{rep}$                      | Hz     | 120             | 50                 | 50        | 5         |
| P                              | kW     | 219             | 90                 | 180       | 630       |



**CERN** manpower



for the beam generation studies

# 0.5 FTE (Staff)

# + 0.2 FTE (Fellow)

## **External collaborations**



| Alphabetic order<br>for countries | Countries      | Institutes           | Contact<br>person | Subject                                                 | Status             | Date           |
|-----------------------------------|----------------|----------------------|-------------------|---------------------------------------------------------|--------------------|----------------|
|                                   | France         | LAL                  | A. Variola        | e+ studies                                              | Formal agreement   | September 2008 |
|                                   | Germany        | FZR Rossendorf       | J. Teichert       | Compton sources                                         | In preparation     | November 2008  |
|                                   | Japan          | KEK                  | T. Omori          | e+ studies                                              | Informal agreement | October 2007   |
|                                   | Japan          | KEK                  | J. Urakawa        | R&D on targets<br>systems and<br>experiments at<br>KEKB | In preparation     | January 2009   |
|                                   | Turkey         | Ankara University    | A.Kenan Çiftçi    | FLUKA simulations                                       | Informal agreement | April 2009     |
|                                   | Ukraine        | Kharkov Institute    | E. Bulyak         | Compton Rings                                           | Informal agreement | April 2006     |
|                                   | United Kingdom | Cockcroft Institute  | J. Clarke         | e+ studies                                              | Formal agreement   | October 2008   |
|                                   | USA            | Argonne Laboratory   | W. Gai            | e+ studies                                              | In preparation     | January 2009   |
|                                   | USA            | Jefferson Laboratory | M. Poelker        | Polarized e-                                            | Formal agreement   | September 2007 |
|                                   | USA            | SLAC                 | J. Sheppard       | Polarized e-                                            | In preparation     | August 2008    |

t

0





# **Generation of polarized electron**

# **Specific issues for polarized e<sup>-</sup> source**



| Symbol            | 0.5 TeV                                                                                             | 3 TeV                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N <sub>e</sub>    | 10 x 10 <sup>9</sup>                                                                                | 6 x 10 <sup>9</sup>                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| n <sub>b</sub>    | 354                                                                                                 | 312                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| t <sub>b</sub>    | ~ 100 ps                                                                                            | ~ 100 ps                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\Delta t_{b}$    | 0.5002 ns                                                                                           | 0.5002 ns                                                                                                                                                                                                                                                                                                                                                                                                                         | laser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| f <sub>b</sub>    | 1999 MHz                                                                                            | 1999 MHz                                                                                                                                                                                                                                                                                                                                                                                                                          | a gun<br>▲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| T <sub>B</sub>    | 177 ns                                                                                              | 56 ns                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F <sub>B</sub>    | 50 Hz                                                                                               | 50 Hz                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C <sub>b</sub>    | 1.6 nC                                                                                              | 0.96 nC                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C <sub>B</sub>    | 566 nC                                                                                              | 300 nC                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I <sub>ave</sub>  | 28 µA                                                                                               | 15 μΑ                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I <sub>B</sub>    | 3.2 A                                                                                               | 1.9 A                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DF                | 0.2                                                                                                 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                               | photo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| I <sub>peak</sub> | 16 A                                                                                                | 9.6 A                                                                                                                                                                                                                                                                                                                                                                                                                             | cathode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| D                 | 5 A/cm <sup>2</sup>                                                                                 | 3 A/cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | Symbol $N_e$ $n_b$ $t_b$ $\Delta t_b$ $f_b$ $T_B$ $F_B$ $C_b$ $C_B$ $I_{ave}$ $I_B$ DF $I_{peak}$ D | Symbol $0.5 \text{ TeV}$ N <sub>e</sub> $10 \times 10^9$ n <sub>b</sub> $354$ t <sub>b</sub> ~ 100 ps $\Delta t_b$ $0.5002 \text{ ns}$ f <sub>b</sub> $1999 \text{ MHz}$ T <sub>B</sub> $177 \text{ ns}$ F <sub>B</sub> $50 \text{ Hz}$ C <sub>b</sub> $1.6 \text{ nC}$ C <sub>B</sub> $566 \text{ nC}$ I <sub>ave</sub> $28 \mu A$ I <sub>B</sub> $3.2 \text{ A}$ DF $0.2$ I <sub>peak</sub> $16 \text{ A}$ D $5 \text{ A/cm^2}$ | $\begin{array}{ c c c c c c c c } \hline Symbol & 0.5 \ TeV & 3 \ TeV \\ \hline N_e & 10 \ x \ 10^9 & 6 \ x \ 10^9 \\ \hline n_b & 354 & 312 \\ \hline t_b & \sim 100 \ ps & \sim 100 \ ps \\ \hline \Delta t_b & 0.5002 \ ns & 0.5002 \ ns \\ \hline f_b & 1999 \ MHz & 1999 \ MHz \\ \hline T_B & 177 \ ns & 56 \ ns \\ \hline F_B & 50 \ Hz & 50 \ Hz \\ \hline C_b & 1.6 \ nC & 0.96 \ nC \\ \hline C_B & 566 \ nC & 300 \ nC \\ \hline I_{ave} & 28 \ \mu A & 15 \ \mu A \\ \hline I_B & 3.2 \ A & 1.9 \ A \\ \hline DF & 0.2 & 0.2 \\ \hline I_{peak} & 16 \ A & 9.6 \ A \\ \hline D & 5 \ A/cm^2 & 3 \ A/cm^2 \\ \hline \end{array}$ |

One of the critical issues is the Surface charge limit => needs demonstration => depends on laser system





| Parameters                    | ILC                   | CLIC                 | CLIC                 |
|-------------------------------|-----------------------|----------------------|----------------------|
|                               |                       | 0.5 TeV              | 3 TeV                |
| Electrons/microbunch          | ~3E10                 | 10E9                 | 6E9                  |
| Number of microbunches        | 2625                  | 354                  | 312                  |
| Width of Microbunch           | 1 ns                  | ~100 ps              | ~100 ps              |
| Time between microbunches     | ~360 ns               | 500.2 ps             | 500.2 ps             |
| Width of Macropulse           | 1 ms                  | 177 ns               | 156 ns               |
| Macropulse repetition rate    | 5 Hz                  | 50 Hz                | 50 Hz                |
| Charge per macropulse         | ~12600 nC             | 566 nC               | 300 nC               |
| Average current from gun      | 63 μ <b>Α</b>         | <b>28</b> μ <b>Α</b> | <b>15</b> μ <b>Α</b> |
| Peak current of microbunch    | 4.8 A                 | 16 A                 | 9.6 A                |
| Current density (1 cm radius) | 1.5 A/cm <sup>2</sup> | 5 A/cm <sup>2</sup>  | 3 A/cm <sup>2</sup>  |
| Polarization                  | >80%                  | >80%                 | >80%                 |





J. Sheppard/SLAC at TILC09 workshop

#### <u>Goals:</u>

- The major goals for photocathode development at SLAC for the ILC and CLIC are:
- 1) demonstration of full charge production without space charge and surface charge limitation;
- 2) >85% polarization;
- 3) ~1% QE and long QE lifetime.

# Formal CERN/SLAC collaboration under discussion for this topic





#### **Possible schedule**



 Assuming that SLAC management would agree with the proposed demonstration and provides support, then preliminary tests are expected before September 2009.
 If existing equipments show some limitations, the idea is to make the appropriate corrections in 2010.

In this case, results and relevant issues will be included in the CDR.

2) Further along (2011-2012), the SLAC cathode and laser would be installed together with JLab HV gun.





# **Generation of unpolarized positron**

# **Primary electron beam**





| Parameter                   | Unit |      |
|-----------------------------|------|------|
| Primary e <sup>-</sup> Beam |      |      |
| Energy                      | GeV  | 5    |
| N e <sup>-</sup> /bunch     | 109  | 7.5  |
| N bunches / pulse           | -    | 312  |
| N e <sup>-</sup> / pulse    | 1012 | 2.34 |
| Pulse length                | ns   | 156  |
| Repetition frequency        | Hz   | 50   |
| Beam power                  | kW   | 94   |
| Beam radius (rms)           | mm   | 2.5  |
| Bunch length (rms)          | mm   | 0.3  |

П





e

After several simulations, an optimized configuration is given below:

# Electron beam on the crystal: energy = 5 GeV beam spot size = 2.5 mm First target is a crystal: 1.4 mm thick W oriented along <111> axis where channeling process occurs Second target is amorphous: 10 mm thick W amorphous

Charged particles are swept off after the crystal: only  $\gamma$  (> 2MeV) impinge on the amorphous target.

The distance between the two targets is 3 meters





#### **O. Dadoun / LAL**

**Blue:** after the target **Red:** after the AMD (\*) Yield =  $2.1 e^{+}/e^{-}$ Max energy =  $1.9 \times 10^9 \text{ GeV} / \text{mm}^3$ Peak Energy Density Deposition PEDD = 15.5 J/g-15 0.51.5 -0.5 Ô. x(cm) (\*) AMD = Adiabatic Matching Device: **Experimental limit found at SLAC:** R = $B_0 = 6 \text{ T}, L = 50 \text{ cm}, \alpha = 22 \text{m}^{-1}$ with a PEDD  $\geq$  35 J/g  $1+\alpha z$ 

=> target does not survive

CLIC ACE meeting

100 (MeV/c) ع

40

 $\mathbf{20}$ 

Û

-20

-40

-60

-80

-100

-2



## **Beam power and PEDD**





| Parameter                             | Unit                                |         |           |
|---------------------------------------|-------------------------------------|---------|-----------|
| Target                                |                                     | Crystal | Amorphous |
| Material                              |                                     | W       | W         |
| Length                                | mm                                  | 1.4     | 10        |
| Beam power deposited                  | kW                                  | 0.2     | 7.5       |
| Deposited P / Beam Power              | %                                   | 0.2     | 8         |
| Energy lost per volume                | 10 <sup>9</sup> GeV/mm <sup>3</sup> | 0.8     | 1.9       |
| Peak energy deposition density (PEDD) | J/g                                 | 6.8     | 15.5      |



## e<sup>+</sup> source for CLIC 500 GeV



#### **Double charge / bunch => Double PEDD => ~ breakdown limit => Double target station**





 $G \approx 10 \text{ MV/m}$  L = 1.8 m Radius = 0.018 m f = 2 GHz

| Magnetic Field of Flux Concentrator (FC) | Т | 6   |
|------------------------------------------|---|-----|
| FC Length                                | m | 0.5 |
| Solenoid Magnetic Field                  | Т | 0.5 |
| Length of Pre-Injector Linac             | m | 42  |



## **Pre-Injector Linac**



#### Longitudinal

| Parameter                                  | Unit            | CLIC 2009<br>(A. Vivoli) |
|--------------------------------------------|-----------------|--------------------------|
|                                            |                 | EGS4 + ASTRA             |
| Energy (E)                                 | GeV             | 0.2                      |
| No. of particles/bunch (N)                 | 10 <sup>9</sup> | 6.7                      |
| Bunch length (rms) ( $\sigma_z$ )          | mm              | 10                       |
| Energy Spread (rms) ( $\sigma_E$ )         | %               | 8                        |
| Longitudinal emittance                     | eV.s            | 0.5 x 10 <sup>-3</sup>   |
| H and V emittances ( $\gamma \epsilon_x$ ) | mm. mrad        | 6700                     |



CLIC ACE meeting

L. Rinolfi





# "ILC/CLIC e<sup>+</sup> generation" working group

# J. Clarke (Daresbury), L. Rinolfi (CERN)





Officially set-up at ILC08 workshop Chicago: 15<sup>th</sup> - 20<sup>th</sup> November 2008



# **CLIC/ILC work plan (1)**



#### Short-term plan 2008 - mid-2009

#### Undulator-based source

Develop Geant4 model of collimator, target, capture optics, and capture RF assembly. Optimise parameters wrt yield, polarisation and cost (Collaboration with ANL). Consider timing constraints issues and upgrade paths. Consider electron beam quality issues.

#### Compton source

Design of the Compton ring (Collaboration with NSC KIPT). Optical stacking cavity (Collaboration with LAL and KEK). High power lasers. Stacking simulations.

#### Lithium lens capture optics

Evaluate suitability for Undulator and Compton schemes (Wide collaboration needed).

#### Conventional sources (Conventional targets and hybrid targets)

Simulations to optimize the unpolarized e+ yield (Collaboration with LAL). Evaluate the applicability of the Li lens.

#### Electron source

Set-up the CERN, CI, JLAB, SLAC collaboration for tracking studies. Preliminary tests at HV for the DC gun.





Long-term plan mid-2009 - 2010

#### Undulator-based source

Consider optimal target technology: thermal load, shock waves, activation (Collaboration with LLNL).

#### Compton source

Extend Geant4 model to Compton source (Collaboration with LAL) Stacking simulations studied in 6D.

Lithium lens tests Participate to the BINP tests and CesrTA tests.

#### Conventional sources

Channelling measurements on NA63 experiment at CERN Perform experiments at KEKB positron source.

#### Electron source

Perform tracking studies (Collaboration with JLAB and SLAC). Hardware tests at JLAB and SLAC for the DC gun at very HV.



## **Summary**



1) For the Base Line configuration at 3 TeV, polarized e<sup>-</sup> and unpolarized e<sup>+</sup> would be generated close to the requested performance but extensive simulations for both sources, in parallel with an important R&D program, remain to be done to confirm the present studies.

2) Double charge configuration (0.5 TeV): for the polarized electrons, the space charge limit is a real challenge to provide the requested charge pattern; for the positrons, it would require a double target stations under the present conditions.

3) For polarized positrons, extensive studies are carried on, in collaboration with several institutes. For the 3 TeV, several major issues remain to be investigated and demonstrated by simulations.

4) The beam intensity stability of both sources could be a performance issue.