PDF sensitivity with LHCb

Tara Shears, for the LHCb electroweak group.

2. High Q² measurements

3. Low Q² measurements

4. Conclusions

LHCb Kinematic range Measurements

Fully instrumented within $1.9 \le \eta \le 4.9$ Trigger: $p_{\mu} > 3$ GeV, $pt_{\mu} > 0.5$ GeV, $m_{\mu\mu} > 2.5$ GeV

2. High Q² measurements

3. Low Q² measurements

4. Conclusions

LHCb Kinematic range Measurements

Angular acceptance + trigger thresholds ensure range of low x, high and low Q^2 can be probed.

2. High Q² measurements
 3. Low Q² measurements

4. Conclusions

LHCb **Kinematic range Measurements**

2. High Q² measurements
 3. Low Q² measurements

4. Conclusions

LHCb Kinematic range **Measurements**

1. IntroductionLHCb2. High Q² measurementsKinen3. Low Q² measurementsMoasure

4. Conclusions

LHCb Kinematic range Measurements

2. High Q² measurements
 3. Low Q² measurements

4. Conclusions

LHCb Kinematic range Measurements

Probing: $Q^2 = 10^4 \rightarrow 10$ $x = 10^{-4} \rightarrow 10^{-6}$

W **Ratios Fitting differential cross-sections**

Ζ

Trigger:

- -2 muons, pt_µ > 10 GeV
- M_{uu} > 50 GeV

Reconstruct:

- $pt_u^{1(2)} > 20 (15) \text{ GeV}$
- IP_{μ}^{μ} significance < 5 E_{had} < 50 GeV

Trigger efficiency 86%; Selection efficiency 91%; Purity 97%.

See J. Anderson, CERN-THESIS-2009-020

1. Introduction Ζ 2. High Q² measurements W 3. Low Q² measurements **Ratios** 4. Conclusions **Fitting differential cross-sections**

Trigger efficiency 74%; Selection efficiency 35%; Purity 90%.

Trigger:

– pt_u > 20 GeV

 $- pt_{u} > 30 \text{ GeV}$

Reconstruct:

See S. Traynor, DIS09

% Measurement Uncertainties with 100pb ⁻¹					
	$W \rightarrow \mu \nu_{\mu}$	Z → µµ			
Statistical	0.5	0.8			
Background	0.3	0.2			
Reconstruction efficiency	0.2	0.3			
Trigger Efficiency	0.1	0.1			
Luminosity	1-5	1-5			

Note: estimates (still under study).

1. IntroductionZ2. High Q² measurementsW3. Low Q² measurementsRatios4. ConclusionsFitting differential cross-sections

Similar experimental precision for W

z W **Ratios** Fitting differential cross-sections

Ratios of W, Z production reduce lumi dependance

 R_{+-} : sensitive to d/u ratio

R_{WZ}: many theoretical uncertainties cancel: test Standard Model (0.4%)

 A_{+-} : sensitive to $u_V d_V$ difference

But more information obtained by fitting W, Z together

w Ratios Fitting differential cross-sections

Idea:

compare measured do/dy for W, Z to PDF prediction, constraining PDFs and fitting integrated luminosity.

Ζ

Test:

- Choose a PDF set. Take central value to be truth
- Generate many pseudo-data sets (assuming multinomial distribution for eigenvector errors), corresponding to a given luminosity
- Fit each pseudo-data set: pseudo-measurement
- Compare pseudo-measurement to truth
 - -centre of distribution gives bias
 - -width of distribution gives precision

See F. De Lorenzi DIS09, R. McNulty PDF4LHC 29/05/09

1. IntroductionZ2. High Q² measurementsW3. Low Q² measurementsRatios4. ConclusionsFitting differential cross-sections

Method using MSTW, CTEQ, Alekhin;

$$f_{0} = \frac{d\sigma}{dy} : \text{ distribution obtained with central eigenvectors}$$

$$f_{i} = \frac{d\sigma}{dy} (\lambda_{i} = 1, \lambda_{\neq i} = 0) : \text{ distribution with ith e.v. moved } 1\sigma$$
Fit
$$\chi^{2}(\lambda_{0}, \lambda_{i}) = \sum_{j=1}^{\#bins} \left[\frac{x_{j} - \lambda_{0} (f_{0} + \lambda_{i} (f_{i} - f_{0}))}{\sigma_{j}} \right]^{2} + \sum_{i=1}^{\#e.v.} \lambda_{i}^{2}$$
Normalisation
(Luminosity) data in j bins, each with uncertainty σ

1. Introduction Z 2. High Q² measurements W 3. Low Q² measurements Ratios 4. Conclusions Fitting differential cross-sections

Method using NNPDF;

$$f_{i} = \frac{d\sigma}{dy} \quad \text{for ith replica}$$
Fit
$$\chi^{2}(\lambda_{0}) = \sum_{j=1}^{\#bins} \left[\frac{x_{j} - \lambda_{0} f_{i}}{\sigma_{j}} \right]^{2}$$

... and only consider consistent replicas (Chisquared probability > 1 %)

Introduction High Q² measurements

3. Low Q² measurements

4. Conclusions

Ratios Fitting differential cross-sections

	0.1 fb ⁻¹				
	MSTW08	CTEQ66	Alekhin	NNPDF	
W+	1.8	2.4	2.0	2.9	
W-	1.9	2.6	2.2	2.7	
Z	1.9	2.4	2.2	2.4	
WWZ	1.7	2.3	1.8	2.0	
	1 fb ⁻¹				
	MSTW08	CTEQ66	Alekhin	NNPDF	
W+	1.6	2.2	1.8	2.4	
W-	1.6	2.3	2.1	2.4	
Z	1.7	2.1	1.9	1.8	
WWZ	1.3	2.1	1.4	2.2	
	10 fb ⁻¹				
	MSTW08	CTEQ66	Alekhin	NNPDF	
W+	1.3	2.0	1.5	2.5	
W-	1.2	1.9	1.6	3.0	
Z	1.4	1.9	1.9	1.9	
WWZ	0.8	1.7	1.0	-	

Z W

Percentage statistical uncertainty on fitted luminosity

1. IntroductionZ2. High Q² measurementsZ3. Low Q² measurementsW4. ConclusionsRatiosFitting differential cross-sections

- Method could have bias if correct PDF not known.
- Selecting only good fits with χ² probability > 1% allows test of PDF model consistency
- Reduces systematic uncertainty due to model dependence

	0.1 fb ⁻¹			
	CTEQ66	Alekhin	NNPDF	
W+	-3.2	-3.7	5.0	
W-	0.1	-2.0	-1.5	
Z	-1.4	-5.6	3.4	
WWZ	-0.7	-3.6	5.0	

Percentage bias on fitted luminosity generated with MSTW08 central values

w Ratios Fitting differential cross-sections

This procedure fits eigenvalues as well as luminosity.

Ζ

- it can constrain our knowledge of the PDFs.

Ratios Fitting differential cross-sections

Z W

Effect on gluon PDF for MSTW08 (1fb⁻¹)

solid line: current uncertainty

dashed line: with LHCb Z data

Straight fit x=10⁻⁴, 11% → 8% x=5.10⁻⁵, 17% → 13% Deweighted fit x=10⁻⁴, 11% → 10% x=5.10⁻⁵, 17% → 15%

Ratios Fitting differential cross-sections

Z W

Effect on gluon PDF for CTEQ66 (1fb⁻¹) Straight fit $x=10^{-4}, 7.5\% \rightarrow 6.5\%$ $x=5.10^{-5}, 7.5\% \rightarrow 6.5\%$

<u>Deweighted fit</u> x=10⁻⁴, 7.5% → 7% x=5.10⁻⁵, 7.5% → 7%

(Smaller difference because impact of data is less)

w Ratios Fitting differential cross-sections

Ζ

Effect on gluon PDF for NNPDF1.0 (1fb⁻¹) $x=10^{-4}, 12\% \rightarrow 9\%$ $x=5.10^{-5}, 13\% \rightarrow 11\%$

-15

-20

10-5

10⁻³

10-4

10⁻²

10⁻¹

1 x

w Ratios Fitting differential cross-sections

Ζ

Effect on gluon PDF for MSTW08 (1fb⁻¹) using WWZ data

x=10⁻⁴, 11% → 7% (8%)

x=5.10⁻⁵, 17% → 10% (13%)

W Ratios Fitting differential cross-sections

Ζ

Effect on u_v PDF for MSTW08 (1fb⁻¹) using WWZ data

x=10⁻⁴, 8% → 4% (6%)

x=5.10⁻⁵, 15% → 10% (13%)

New: thanks Francesco

w Ratios Fitting differential cross-sections

Ζ

Effect on d_v PDF for MSTW08 (1fb⁻¹) using WWZ data

x=10⁻⁴, 8% → 5% (6%)

x=5.10⁻⁵, 17% → 10% (14%)

Trigger:

- 2 muons, $\Sigma pt_{\mu} > 1.6 \text{ GeV}$

Reconstruct:

- $p_{\mu} > 21 \text{ GeV}$
- $-IP_{\mu}$ significance < 3
- P_{μ} asymmetry variables
 - $A(P_{\mu 1}, P_{cone1})$
 - $A(P_{\mu 2}, P_{cone2})$

$$A(P_{\mu 1} + P_{\mu 2}, P_{rest})$$

A(P_{cone1} + P_{cone2}, P_{rest})

γ*

Combine variables into Fisher discriminant

2. High Q² measurements

3. Low Q² measurements

4. Conclusions

γ*

Understanding backgrounds with data

Experimental precision (stat.) quickly exceeds theoretical precision.

у

4. Conclusions

LHCb can measure Z, W, low invariant mass γ^* in the forward region with good precision.

Measurements probe partons down to x of 10⁻⁶

Fitting W,Z differential cross-sections can constrain PDF descriptions.

Understanding backgrounds with data

Do Z shapes match lower masses?

