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Motivation: accurate track reconstruction 
in rare-event searches

How accurate?
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E.g. 10 bar Xe, E = 300 V/cm

𝜎𝑖𝑜𝑛𝑠 =  
1.3 𝑚𝑚 𝐿 = 1 𝑚
1.8 𝑚𝑚 𝐿 = 2 𝑚

Electron diffusion under the same conditions:

𝜎𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 ≈  
13 𝑚𝑚 𝐿 = 1 𝑚
18 𝑚𝑚 𝐿 = 2 𝑚
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Problem: ions are slow

Drift velocity of ℴ 102 cm/s, thermal kinetic energies

Detection must rely on a potential-driven process  
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Luckily, Nature provided us with 
Auger neutralization (AN)
What is AN?

• When a positive ion approaches a surface a first electron tunnels out 
and neutralizes it, leaving the system with excess energy

• This energy is simultaneously transferred, in an Auger-like process, to a 
second electron which may be emitted into the gas

Historical context

• First suggested by S. S. Shekhter in 1937

• Experimental and theoretical foundations laid by H. D. Hagstrum (Bell 
Labs) in 1953-1961: studied AN for single ions of all noble gases, 
impinging on metals (W, Mo) and semiconductors (Si, Ge)

• Was of central importance to the development of plasma panel displays

• Still an active field in surface science theory
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Key features of AN
• Driven by potential energy  ok for thermal ions

• Occurs for both atomic and molecular ions

• Occurs for metals and insulators/semiconductors

• Necessary condition: the ionization energy of the ion close to the 
surface must be larger than twice the work function: 𝐸𝑖

′ > 2𝜑

• 𝛾𝑖 : secondary electron yield = probability of ion-induced secondary 
electron emission (IISEE)

• 𝛾𝑖 generally increases with increasing 𝐸𝑖
′ and decreasing 𝜑. Can be 

as large as tens of %
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Other mechanisms?

• In some cases AN is the only possible mechanism for charge transfer

(e.g., He+ on metals and semiconductors). This requires that the ion 

ground and excited states are not resonant with occupied states in 

the solid. 

• When resonant processes are possible secondary electron emission 

can still occur, but with lower probabilities. The condition 𝐸𝑖
′ > 2𝜑

still holds.
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Auger neutralization – external 
emission
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• Energy lost by electron 1 is 
taken by electron 2

• If sufficiently large and 
electron 2 starts from the 
upper valence band it may 
be emitted externally

Ion ground state below 
bottom of valence band





Auger neutralization – internal 
emission
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Ion ground state below 
bottom of valence band

S. Shchemelinin and A. Breskin, 
“Observation of electron excitation 
into silicon conduction band by slow-
ion surface neutralization”, 
arXiv:1607.02924

• If electron 2 starts from 
the lower valence band it 
may enter the conduction 
band without external 
emission

• Also useful?





IISEE yields of noble gas ions
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ion 𝑬𝒊 𝒆𝑽 𝑬𝒊 − 𝟐𝝋 𝒆𝑽 𝜸𝒊 %

He+ 24.59 16.0 30

Ne+ 21.56 13.0 25.4

Ar+ 15.76 7.2 12.2

Kr+ 14.00 5.4 6.9

Xe+ 12.13 3.5 2.2

Target: atomically clean molybdenum, work function 4.3 eV

H. D. Hagstrum, Phys Rev 104 (1956) 672

Monolayer of N2 on W reduces 𝛾𝑖 by a factor ranging from 1.6 (He) to 6.5 (Xe)



IISEE yields of noble gas ions
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Decreasing 𝜑

𝐸𝑖 − 2𝜑 [eV]Elsbergen et al, SID Int. Symp. Dig. Tech.
Papers, 2000, 220–223.

𝛾𝑖 inferred from Paschen
curves

H:C = Hydrogen terminated CVD 
diamond, with Negative Electron 
Affinity (NEA) of -0.8 eV

BAM = BaMgAl10O17 phosphor

𝜑 = 4.6 𝑒𝑉

Xe: 𝛾𝑖 = 2%

Further decrease of 𝜑 in 
NEA-diamond expected to 
result in larger 𝛾𝑖 for Xe



So what’s NEXT?
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MC of ββ0ν event – 2 blobs at the ends



Compromise?
Searching for 𝛽𝛽0𝜈 in HPXe at the ton scale  compromise between energy 
resolution and accuracy in track reconstruction
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Design option Intrinsic FWHM 
Energy 

resolution 

rms diffusion 
(1 m)

rms diffusion 
(2 m)

Pure Xe 0.33% ~13 𝑚𝑚 ~18 𝑚𝑚

Xe + 0.05% CO2 0.47% 4.8 𝑚𝑚 6.8 𝑚𝑚

Xe + 0.5% CH4 0.53% 3.1 𝑚𝑚 4.4 𝑚𝑚

Xe + 1.0% CH4 0.8% 2.3 𝑚𝑚 3.2 𝑚𝑚

Pure Xe
using ions for topology

and electrons for energy

0.33% 1.3 𝑚𝑚 1.8 𝑚𝑚

*

* Azevedo et al, JINST 11 (2016) C02007 arXiv:1511.07189 – 10 bar, 300 V/cm



Let’s take this one step at a time
• 1 ∙ 105 electron-ion pairs for event at 𝑄𝛽𝛽

• All Xe+ ions immediately (~10−10 s) convert to Xe2
+

• Electrons quickly reach EL region near anode (at +HV)

• Energy + (smeared) track image measured by electrons EL signal

• Xe2
+ ions reach cathode plane within <1 s

• Xe2
+ ions ionization energy = 11.2 eV (lowest of all impurities)  no 

charge-exchange collisions  all Xe2
+ ions make it to cathode
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Now here comes the fun part
• Cathode plane comprised of tiled array of fused silica plates, each 

with MSGC-like pattern of active strips at ground, interlaced with field 
strips at modest +HV. Spacing between active strips ~1 mm.

• Ions landing on active strips release secondary electrons by AN

• Emitted electrons follow field lines to positive field strips. Field tuned 
to gain of ℴ 10  ℴ 103 photons per detected ion

• EL light produced by electrons recorded by dense array of VUV-SiPMs
immediately behind cathode plane

• Recorded light pattern provides track topology with spatial resolution 
governed by ion diffusion (+ some smearing by readout granularity)
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Cathode plane cartoon
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Some numbers
• EL signals sufficiently large (ℴ 103 photons)

Ion Detection efficiency = 𝛾𝑒𝑓𝑓 = 𝛾𝑖 ∙ 𝜀𝑒𝑥𝑡

where 𝜀𝑒𝑥𝑡 is the extraction efficiency = probability that the emitted 
electron is not backscattered to the surface

• 𝜀𝑒𝑥𝑡 can be readily >20%  𝛾𝑖 of a few % will provide several hundred 
detected ions (out of 1 ∙ 105)

• E.g. 𝛾𝑖 = 2% & 𝜀𝑒𝑥𝑡 = 20% 400 detected ions with ~0.5 mm spacing 
for 20 cm track
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Extraction efficiency of electrons into 
10 bar Xe at room temperature
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For 𝐸𝑖
′ = 10 − 11 eV,

𝜑 = 3 − 4 eV :

𝐸𝑘 ≈
1

3
𝐸𝑘
𝑚𝑎𝑥

≈ 0.6 − 1.6 eV

Garfield++



Some more numbers
• For 6 mm SiPMs with array PDE=10%, 3 mm behind the cathode plane, the 

emission of 2000 EL photons into 4π gives 𝜎𝑥𝑦 ≈ 0.5 𝑚𝑚 for center-of 
gravity (COG) determination 

• For avalanche gain = 10, the required EL is then ~200 photons/e over a 
trajectory of ~0.5-1 mm (NEXT-100 TDR: 2500 photons/e over 5 mm)

• To avoid continuous ion feedback we need 𝑔𝑎𝑖𝑛 ∙ 𝛾𝑒𝑓𝑓 < 1 – readily satisfied 
for gain of ℴ 10 and 𝛾𝑒𝑓𝑓 < 1%

• EL signals will last ℴ 10 − 100 𝑛𝑠 . Contribution of SiPM dark counts (even if 
105 Hz/mm2) will be small over the total area of the SiPM pixels used for COG

• EL photon feedback expected to be low (for active material of low QE and 
thin strips)

• BUT: Field emission must be kept very low (roughly <10-14 A/cm2)
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Candidate materials
CVD diamond with negative electron affinity (NEA)

 Either nanoparticles (UNCD – ultrananocrystalline diamond) or single-crystal 
layers

 ‘Tunable’ NEA depends on surface termination (e.g. by H, D or Mg) and 
annealing  work function can be tuned to 3-4 eV

(at 𝜑 = 4.6 𝑒𝑉 𝛾𝑖 = 2% for Xe ions; naively 𝜑 = 3 𝑒𝑉 𝛾𝑖 ≈ 10% )

 Passivation through surface termination  no monolayer of impurities

 Can be used to form thin strips on fused silica

 Field emission may be high for UNCD (much less for single-crystal layers), but 
can possibly be kept low enough by tweaking the parameters
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Candidate materials
Thin MgO film on molybdenum 

 Few atomic layers of MgO grown on single-crystal Mo

 Work function 3.2 eV

 Passivation provided by MgO  no monolayer of impurities

 No known issues with field emission

Stuckenholz et al, J. Phys. Chem. C 2015, 119, p. 12283
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Summary and outlook
 Positive ion detection in ton-scale 𝛽𝛽0𝜈 searches in HPXe may enable having 

both superb intrinsic energy resolution (0.3% intrinsic FWHM at 𝑄𝛽𝛽) and 
accurate track reconstruction (𝜎 < 1.8 mm over 2 m drift)

 It will also enable having a 𝑡0 signal from S1 (likely lost for Xe + admixtures)

 Since we start with 105 ions a modest IISEE yield of a few % will be sufficient 
for detecting several hundred ions with sub-mm spacing  should be enough 
to identify the two blobs + other track features

 Such yields appear at hand using existing materials (but must keep an eye on 
field emission)

 First samples for testing are expected soon from Argonne National Laboratory

 Careful studies required to translate this to actual sensitivity to 𝛽𝛽0𝜈

 Can AN be also used in directional dark matter searches?
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“If we pull this off, we’ll eat like kings.”

G. Larson, “The Far Side” (1983)



Backup slides
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Resonance neutralization
• Dominant when the ground state of the ion lies above the bottom of 

the valence band (in insulators)

• A first valence electron tunnels resonantly to the ion ground state 
and neutralizes it, without losing energy

• A second valence electron drops to fill the hole left by electron 1

• The energy lost by electron 2 can be taken by a third electron only if it 
puts it in the conduction band (and may then be emitted) – otherwise 
it will be lost through other channels.

• Electron emission out of the solid still requires 𝐸𝑖
′ > 2𝜑 and happens 

with lower probability than the pure AN case.
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Resonance neutralization – external 
emission
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Resonance neutralization –
forbidden transitions
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If the energy lost by electron 2 is 
smaller than the band gap the 
transition is forbidden and the 
excess energy is released by other 
mechanisms (e.g., photon emission).


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Xe cross sections (Magboltz)
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H. D. Hagstrum, Phys Rev 104 (1956) 672 H. D. Hagstrum, Phys Rev 122 (1961) 83



𝛾𝑖 and 𝛾𝑒𝑓𝑓 for CH4 ions on 
bialkali photocathodes
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Lyashenko et al, J. Appl. Phys. 106 (2009) 044902

𝜀𝑒𝑥𝑡 = 6%

𝛾𝑖 = 47 − 49%


