# GEM-based alternatives for Ion Backflow suppression

# Hugo Natal da Luz Purba Bhattacharya Luis Franca





Natal da Luz Bhattacharya

#### Motivation

Collection Using it

Detector

### Results

V<sub>LP</sub> and V<sub>SP</sub> E<sub>T1</sub> and E<sub>T2</sub> VS

### Discussion

Conclusions

# **1** Motivation

# **2** GEM property: collection efficiency

How to use it in our favor

# 3 Detector

# 4 Results

- $\blacksquare$   $V_{LP}$  and  $V_{SP}$  scans
- $E_{T1}$  and  $E_{T2}$  scans
- V<sub>S</sub> scan

# 5 Discussion

2/19

# 6 Next steps and conclusions



# ALICE TPC Upgrade

### Expected increase of event rate to $50\,\text{kHz}$ in Run 3

### LP-S-SP

Natal da Luz Bhattacharya

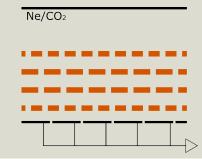
### Motivation

Collection Using it

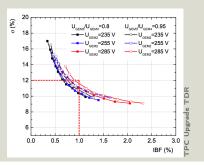
Detector

### Results

V<sub>LP</sub> and V<sub>SP</sub> E<sub>T1</sub> and E<sub>T2</sub> V<sub>S</sub>


### Discussion Conclusions

■ Replacement of MWPC in readout chambers by GEMs.


 $\blacksquare$  IBF  $<1\,\%$  and Energy resolution (@ 5.9 keV)  $<12\,\%$  madatory.

### Final result after very intense and complete research program

- 4-GEM with two different types:
  - 140 µm (Standard pitch)
  - 280 µm (Large <u>P</u>itch)



- Sequence of GEM stack:
  - Cathode–S–LP–LP–S–Anode







**Motivation** 

LP-S-SP

Natal da Luz Bhattacharva

Collection Using it

Detector

### Results

VLP and VSP ET1 and ET2 VS Discussion

Conclusions

Further research has shown a very good consistency of these results.

### One possible disadvantage:

- Many parameters / degrees of freedom
- challenging construction
- concept difficult to transfer to other possible experiments.

### What if we could...

- Reduce number of GEMs.
- Use argon-based mixture (in some countries it is hard to find Neon at a reasonable cost).

### Studies done using two approaches



- Lab tests
- Simulations (on going)

# Collection efficiency

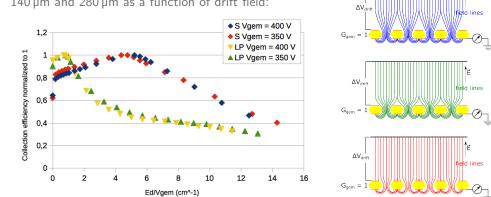
Collection efficiency (normalized to 1) for pitch  $140 \,\mu\text{m}$  and  $280 \,\mu\text{m}$  as a function of drift field:



Motivation

Collection Using it

Detector


Results VLP and VSP ET1 and ET2

VS Discussion

Conclusions



- Low field: focusing effect. Few electrons generated near the copper surface do not reach the holes.
- Maximum efficiency: all electrons are brought to the holes.
- High field: some field lines end between the holes leading to lost electrons to the copper surface of the GEM.



# Collection efficiency — using it in our favor

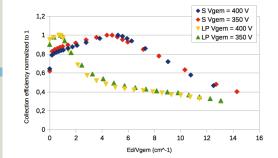
Collection efficiency (normalized to 1) for pitch 140  $\mu m$  and 280  $\mu m$  as a function of drift field:

### LP-S-SP

Natal da Luz Bhattacharya

#### Motivation

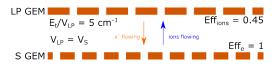
Collection


- Using it
- Results

VLP and VSP ET1 and ET2 VS Discussion

Conclusions








- The transfer field works as a drift for electrons and for ions in oposite directions.
- Using two different GEMs we are tuning the transfer field to have a high efficiency for electrons while keeping a low efficiency for ions.

Remarks:

- Curves are normalized to 1: we are interested on the point when efficiency drops — efficiency threshold.
- Efficiency is dependent of the ratio  $E_{\text{drift}}/\Delta V_{\text{gem}}$  (not only of  $E_{\text{drift}}$ ).
- The efficiency threshold increases as the pitch decreases.

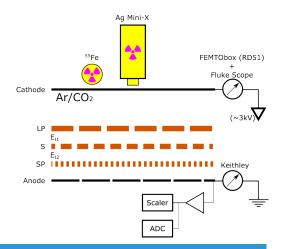




Natal da Luz Bhattacharva

Motivation

Collection Using it


Results

VLP and VSP ET1 and ET2 VS Discussion

Conclusions

Three GEMs with different pitch:

- LP (Large Pitch): 280 µm
- **S** (**S**tandard): 140 μm
- SP (Small Pitch): 90 µm



## Technical details

The detector



- Ar/CO<sub>2</sub> (90/10) at 6 l/h
- 7 independent HV channels (CAEN VME PS)
- Spacing (drift/trans1/trans2/ind in mm): 7.2/2.2/2.2/1.6

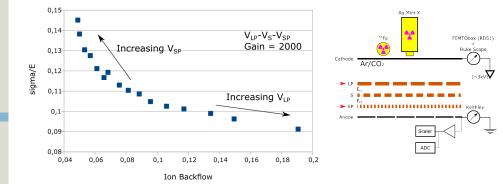


# Results — $V_{LP}$ and $V_{SP}$ scan



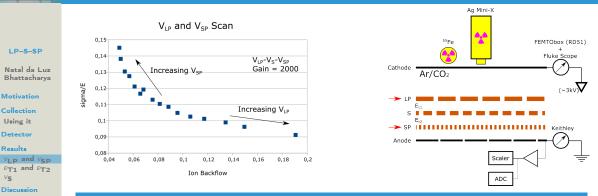
Natal da Luz Bhattacharya

- Motivation
- Collection Using it
- Detector
- Results


V<sub>LP</sub> and V<sub>SP</sub> E<sub>T1</sub> and E<sub>T2</sub> V<sub>S</sub> Discussion

Conclusions

8/19




 $V_{LP}$  and  $V_{SP}$  Scan



- Gain kept at 2000.
- Only voltages across LP and SP were changed:
  - Increase/decrease  $V_{LP} \Rightarrow$  decrease/increase  $V_{SP}$ .
- The other voltages were not optimized. This was a scan only to cross check the system was working as expected.

# Results — $V_{IP}$ and $V_{SP}$ scan



### Making sure everything is clear:

- When LP has the largest part of the detector gain:
  - Resolution improves because one single multiplication stage right after the primary cloud has less fluctuations.
  - but more ions are entering the drift region.
- When SP has the largest part of the gain:
  - Resolution decreases because of small multiplications in two previous stages
  - IBF decreases because all these ions must cross two GEMs to reach the drift region.

9/19



VS

Conclusions

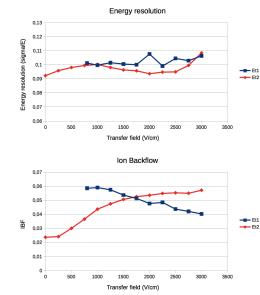
# Results — $E_{T1}$ and $E_{T2}$ scans

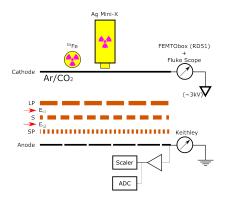


Natal da Luz Bhattacharya

### Motivation

Collection Using it


Detector


# Results

VLP and VSP ET1 and ET2 VS Discussion









- Gain 2000  $\pm$  50, tuned with V<sub>S</sub>.  $E_{drift} = 300 \text{ V/cm} (\text{to reduce } V_{LP}).$
- Resolution does not change much as the fields change but,
- To optimize IBF  $\Rightarrow$  increase  $E_{T1}$  and decrease  $E_{T2}$ .

# Results — $V_{\rm S}$ scan

Vs scan



Natal da Luz Bhattacharya

- Motivation
- Collection Using it
- Detector
- Results

V<sub>LP</sub> and V<sub>SP</sub> E<sub>T1</sub> and E<sub>T2</sub> V<sub>S</sub>

Discussion

Conclusions

Ag Mini-X 0,045 0,16 0.04 - 0,15 sigma/E 55Fe FEMTObox (RDS1) - 0,14 0,035 Fluke Scope 0,13 Cathode Ar/CO<sub>2</sub> - 0.12 0,02 resolution Ш (~3kV) 0,02 - 0,11 0.015 - 0.1 Energy SP IIIIIII 0.09 0.01 0,08 0,005 Scale 0.07 200 50 100 150 250 400 450 ADC Vs (V)

- Gain 2000  $\pm$  50.  $E_{T1}$  and  $E_{T2}$  optimized.  $V_{LP}/V_{SP}$  kept constant (but not optimized). Remember:  $E_{drift} = 300 \text{ V/cm}$ .
  - No significant variation in resolution, but IBF has an optimal range.

### IBF:





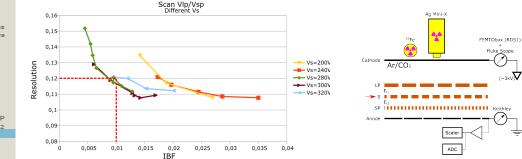
- Low V<sub>S</sub>: V<sub>LP</sub> and V<sub>SP</sub> must increase to compensate the gain. More ions from LP GEM.
- High V<sub>S</sub> (possibility): increases collection of ions from T<sub>2</sub> (which has low field) and all these are collected due to high E<sub>T1</sub>.

Results —  $V_{\rm S}$ 



Natal da Luz Bhattacharya

Motivation


Collection Using it

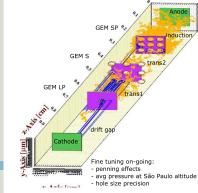
Detector

Results V<sub>LP</sub> and V<sub>SP</sub> E<sub>T1</sub> and E<sub>T2</sub>

Discussion

VS




 $V_{\rm LP}/V_{\rm SP}$  scan for different  $V_{\rm S}$ :

- Gain 2000  $\pm$  50.  $E_{T1}$  and  $E_{T2}$  optimized.
- Just touched 1 % IBF/12 % resolution rectangle with Ar mixture and 3 GEMs





# Simulation results



13/19



LP-S-SP

Natal da Luz

Bhattacharya Motivation

Collection

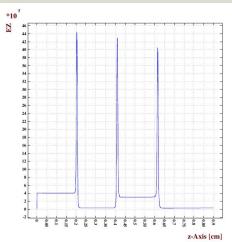
Using it

Detector

Results

VS

VLP and VSP


ET1 and ET2

Discussion

Conclusions

| - avg pressure at São Paulo altitude<br>- hole size precision |     |        |                 |     |       |  |  |  |
|---------------------------------------------------------------|-----|--------|-----------------|-----|-------|--|--|--|
| Settings and results                                          |     |        |                 |     |       |  |  |  |
|                                                               |     |        | $E_{\rm drift}$ | .3  | kV/cm |  |  |  |
| $V_{\sf LP}$                                                  | 281 | $\vee$ | $E_{T1}$        |     | kV/cm |  |  |  |
| $V_{\rm S}$                                                   | 300 | $\vee$ | $E_{T2}$        | .25 | kV/cm |  |  |  |
| $V_{\rm SP}$                                                  | 311 | $\vee$ | $E_{ind}$       | 4   | kV/cm |  |  |  |
| Gain: 1800 (experimental: 2000)                               |     |        |                 |     |       |  |  |  |
| IBF: 0.011 (experimental: 0.017).                             |     |        |                 |     |       |  |  |  |
| E resolution: 0.1 ( $\sigma$ )                                |     |        |                 |     |       |  |  |  |

| Collection and extraction efficiencies |            |            |  |  |  |  |  |  |
|----------------------------------------|------------|------------|--|--|--|--|--|--|
|                                        | collection | extraction |  |  |  |  |  |  |
| GEM LP                                 | 0.73       | 0.29       |  |  |  |  |  |  |
| GEM S                                  | 0.44       | 0.06       |  |  |  |  |  |  |
| GEM SP                                 | 0.95       | 0.27       |  |  |  |  |  |  |





Natal da Luz Bhattacharya

### Motivation

- Collection
- Using it
- Detector

### Results

 $V_{LP}$  and  $V_{SP}$  $E_{T1}$  and  $E_{T2}$  $V_{S}$ 

Conclusions

14/19



Expected effect of LP–S–SP geometry did not play an important role.

### Expected settings from LP-S-SP

- moderate E<sub>T1</sub>: to allow for a good collection efficiency of electrons in S GEM and bad collection of ions in LP.
- *E*<sub>T2</sub> > *E*<sub>T1</sub>: the small pitch of SP GEM should allow for very high *E*<sub>T2</sub>, which would reduce ion collection in S GEM.

## What we got:

- high E<sub>T1</sub>
- $\bullet E_{T2} \ll E_{T1}$
- Besides tunning V<sub>LP</sub>/V<sub>SP</sub>, the most important requirement is E<sub>T1</sub> as large as possible and E<sub>T2</sub> as small as possible.

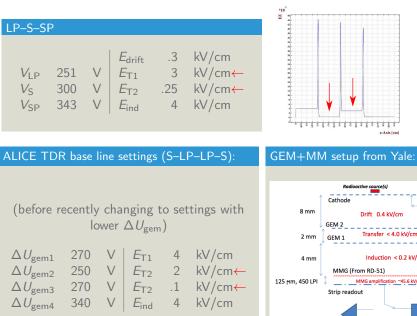
|              |     |        | $E_{\rm drift}$ | .3  | kV/cm  |
|--------------|-----|--------|-----------------|-----|--------|
| $V_{\rm LP}$ | 251 | $\vee$ | $E_{T1}$        | 3   | kV/cm← |
| $V_{\rm S}$  | 300 | $\vee$ | $E_{T2}$        | .25 | kV/cm← |
| $V_{\rm SP}$ | 343 | V      | $E_{ind}$       | 4   | kV/cm  |

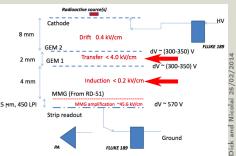
# We have seen it before



Natal da Luz Bhattacharva

### Motivation


Collection Using it


### Detector

### Results

VLP and VSP ET1 and ET2 VS

Conclusions





z-Axis [cm]





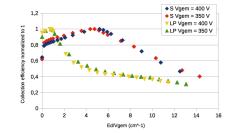
Natal da Luz Bhattacharya

#### Motivation

Collection Using it

Detector

### Results


V<sub>LP</sub> and V<sub>SP</sub> E<sub>T1</sub> and E<sub>T2</sub> V<sub>S</sub>

Discussion

Conclusions

LP–S–SP setup is shown, but this thought works for any setup.





### What happens in each GEM

- LP GEM Electrons efficiently extracted from holes lons with a low collection efficiency.
  - **S GEM** Low collection of electrons Low extraction of electrons Generation of ions High extraction of ions High collection of ions

**SP GEM** Good collection of electrons Low extraction of ions.

- The system 'high E<sub>T1</sub>/low E<sub>T2</sub>' is a very good filter for ions.
- but the S GEM is spoiling the result (do we even need it?!).



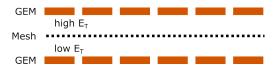


Natal da Luz Bhattacharya

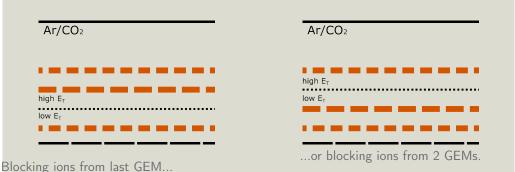
### Motivation

Collection Using it

Detector


### Results

 $V_{LP}$  and  $V_{SP}$  $E_{T1}$  and  $E_{T2}$  $V_{S}$ 


Discussion

Conclusions

Replace GEM by a mesh, which divides transfer region in the two different zones we need:



# Usage examples (inspired by ALICE setup):







#### Natal da Luz Bhattacharya

- Motivation
- Collection Using it
- Detector

### Results

VLP and VSP ET1 and ET2 VS Discussion

. . .

- 3-GEM LP—S—SP setup achieved 1 % IBF with 12 %  $\sigma$  energy resolution at 5.9 keV, in Ar-based mixture at gain 2000,
- Simulations and experimental data in process of tuning and converging,
- Results understood and opened a space for new ideas.

### Future work

- Test concept of using mesh to separate transfer regions in two different fields,
  - accurate measurement of absolute collection and extraction efficiencies,
  - study possible issues on stability against sparking,
  - evaluate drawbacks in case more stages with mesh are needed (complicating the setup).





Natal da Luz Bhattacharya

### Motivation

Collection

Using it

Detector

### Results

 $V_{LP}$  and  $V_{SP}$  $E_{T1}$  and  $E_{T2}$  $V_{S}$ 

Discussion

# Thank you Looking forward for your comments/questions.

