

www.lnf.infn.it

G. Bencivenni¹, R. De Oliveira², P. De Simone¹, M. Gatta¹, <u>G. Morello¹</u>, M. Poli Lener¹

RD51 mini week, December 13th 2016

1. Laboratori Nazionali di Frascati dell'INFN

2. CERN

The detector architecture

The μ-RWELL is composed of only two elements: the μ-RWELL_PCB and the cathode

The **µ-RWELL_PCB**, the core of the detector, is realized by coupling:

- a "WELL patterned kapton foil" as "amplification stage"
- 2. a **"resistive sheet"** for the discharge suppression & current evacuation
 - i. "Single resistive layer" (SL) < 100 kHz/cm²: single resistive layer \rightarrow surface resistivity ~100 M Ω / \Box (CMS-phase2 upgrade; SHIP)
 - ii. "Double resistive layer" (DL) > 1 MHz/cm²: more sophisticated resistive scheme must be implemented (MPDG_NEXT- LNF) suitable for LHCb-Muon upgrade
- 3. a standard readout PCB

G. Bencivenni et al., 2015_JINST_10_P02008

The µ-RWELL_PCB for Low Rate (CMS/SHiP)

The µ-RWELL_PCB for High Rate (LHCb)

X-ray measurements

Two prototypes with the **double resistive layer scheme** (ρ =40 M Ω/\Box) have been completed last Summer; the detectors have been tested with a 5.9 keV X-rays flux **(local irradiation)**.

Gain in $Ar:iC_4H_{10}$ 90:10

Measurement performed in current mode.

Gain measured up to 10000. Similar behaviour for the two chambers.

X-ray measurements

LARGE AREA

In the framework of the CMS-phase2 muon upgrade we are developing large size μ -RWELL. The **R&D** is performed in strict collaboration with Italian industrial partners (**ELTOS & MDT**). The work is performed in **two years** with following schedule:

1. Construction & test of the first **1.2x0.5m² (GE1/1) μ-RWELL** 2016 2. Mechanical study and mock-up of 1.8x1.2 m² (GE2/1) µ-RWELL 2016 3. Construction & test of the first 1.8x1.2m² (GE2/1) µ-RWELL 12/2017-6/2018

Large area prototype

- A large area prototype, following the **single resistive layer scheme**, has been realized for tests. The amplification stage suffered delamination (copper removal) in some sectors during the etching process. The origin of the problem is the combination of a wrong operation done by Eltos with the choice of a corrupted base material.
- The amplification stage has been glued on the readout PCB with the vacuum bag technique.
- The detector has been completed with a frame and a cathode

Large area prototype

- Anyway the HV sectors drew in some cases anomalous currents and we needed an intervention by Rui.
- The whole stack composed of readout and u-RWELL has been washed in a ultrasonic bath, with the consequence of a separation of the foil from the PCB.
- After supplying up to 1 kV, four sectors were labeled as "good" (R >10 GΩ when ΔV = 500 V).
- The foil has been glued again on the PCB with a 100 um thick FILM GLUE produced by 3M company.

Beam Test Setup

E drift optimization

• A first optimization of the detector operation has been done with a scan of the Drift field. The mesurement have been done operating the detectors at a gain of 10000

Efficiency & time resolution measurement

The efficiency has been evaluated asking for TDC **coincidence** selected in a proper range.

Then the ratio of the triplets on

The TDC distribution is then fitted with a simple gaussian and the sigma is then **deconvoluted** by the contribution of the VFAT.

$$\sigma_t^2 = \sigma_{TDC}^2 - \left(\frac{25}{\sqrt{12}}\right)^2$$

Performance vs Gain with Ed=3,5 kV/cm (our group + CMS: L. Benussi, L. Borgonovi, P. Giacomelli, M. Ressegotti, C. Riccardi, I. Vai)

Measurements done with GEM by LHCb group at LNF gave $\sigma_t = 4.5$ ns with VTX chip, constant fraction discriminator.

Performance vs Rate

The detector rate capability (with Ed=3,5 kV/cm) has been measured in current mode with a pion beam and irradiating an area of $\sim 3 \times 3 \text{ cm}^2$ (FWHM)

Outlook

- Ageing test at GIF++ of the large area detector (SL) and small detectors (DL)
- Test beam at PSI (ΠM1) to evaluate the rate capability under "uniform" irradiation
- Test beam at BTF for time performance measurement with VTX chip
- Construction of large area μ-RWELLs with GE1/1 and GE2/1 dimensions (CMS)
- Construction of prototypes with double resistive layer scheme and pad readout (LHCb)

Spare

The two detector layouts (II)

(*) Morello's model: appendix A-B (G. Bencivenni et al., 2015_JINST_10_P02008)

The µ-RWELL performance: Beam Tests

H4 Beam Area (RD51) Muon beam momentum: 150 GeV/c Goliath: B up to 1.4 T

BES III-GEM chambers

µ-RWELL prototype 12-80-880 MΩ /□ 400 µm pitch strips APV25 (**CC analysis**) Ar/iC₄H₁₀ = 90/10

GOLIATH

µ-RWELL: tracking efficiency

Ar/ISO=90/10

cC anal

Ar/ISO=90/10

At low resistivity the spread of the charge (cluster size) on the readout strips increases, thus requiring a higher gain to reach the full detector efficiency.

Space resolution: orthogonal tracks

CC analysi

The space resolution exhibits a minimum around $100M\Omega/\Box$. At low resistivity the charge spread increases and then σ is worsening. At high resistivity the charge spread is too small (Cl_size \rightarrow 1) then the Charge Centroid method becomes no more effective ($\sigma \rightarrow \text{pitch}/\sqrt{12}$).

µ-RWELL: B≠0 with Ar/ISO=90/10

For $\theta=0^\circ$ and 0 < B < 1T $\rightarrow \sigma < 180 \mu m$ and $\epsilon > 98\%$

June 2015 - $\theta = 0^{\circ}$

Rate capability in Ar:iC,H10 90:10 at G=4000

