

EUROPEAN SPALLATION SOURCE

Position resolution of Gd-GEM detectors for the NMX instrument

Dorothea Pfeiffer

14.12.2016 RD51 miniweek This work was funded by the EU Horizon 2020 framework, BrightnESS project 676548

NMX detectors

Reflections of example crystal

TOF separation of reflections

EUROPEAN SPALLATION SOURCE

Requirements and challenges

- 200 µm position resolution (beyond state of art for time resolved neutron detectors)
- High rate requirements with up to MHz/cm²
- High gain stability and count rate stability
- Mechanical robustness (detectors mounted on freely movable robotic arms)
- Reasonable gamma suppression
- Idea: Use GEM detector with Gd converter

Gd-GEM backwards setup

¹⁰B₄C GEM µTPC Results

- Pristine position resolution σ <200 μ m reached with Single GEM
- Detection efficiency < 5 % at normal incidence of neutron

Gd-GEM µTPC Results

- Position resolution σ <300 μ m reached with Triple GEM, APV-25
- Detection efficiency < 12 % at normal incidence of neutron

Better tracking algorithms needed

Geant4 Gd simulation problems Getting worse in 10.2.p02

Problems with gamma spectra: <u>https://zzz.physics.umn.edu/lowrad/_media/meeting8/ychen_gdgammas_aarm2015.pdf</u>

Task division Geant4/Garfield++

Arrival position neutron on converter

13

Arrival position ce in drift

14

Arrival position Compton e⁻ in drift

Arrival position gamma in drift

Number of conduction electrons in drift

Position of conduction electron that arrives last in time on first GEM

18

Degrad Simulations

19

DEGRAD simulation of 70 keV electron in Ar/CO $_2$ /U/30

DEGRAD by Steve Biagi: http://magboltz.web.cern.ch/magboltz/

- Only Monte Carlo program that incorporates all relevant physics processes for electrons in gas
- Simulations with Geant4/Garfield interface have to be benchmarked against Degrad
- Check of primary ionization distribution in Geant4/Garfield++

Degrad: Obtainable position resolution in um

keV	10%	25%	50%	75%	90%	< 400 um
10	1	3	7	115	600	83%
20	1	3	8	32	1638	78%
30	1	3	8	380	3473	75%
40	1	3	8	265	5921	75%
50	1	3	8	122	8076	76%
60	1	3	7	26	9809	79%
70	1	2	7	21	12788	82%
80	1	3	6	15	7306	87%
90	0	2	7	15	437	<mark>89%</mark>
100	0	2	6	13	53	91%
110	0	2	6	13	57	92%
120	0	2	6	11	25	94%
130	0	2	6	12	29	95%
140	0	2	5	11	23	97%
150	0	2	6	11	24	96%
160	0	2	5	11	21	98%
170	0	2	5	10	20	98%
180	0	2	5	11	21	98%
190	0	2	6	12	20	98%
200	0	2	5	11	22	98%

Infinite volume

- The (x,y) position of the electron with the smallest z position was taken
- 2-25% of tracks turn back depending on energy
- No drift and diffusion

Summary

- Scattering of neutron considerably deteriorates position resolution
- Two GEM foils instead of three and low material budget readout lead to major improvement
- The position where the conversion electron enters the drift can be reconstructed with <= 400 um precision for ca 90% of all conversion (without diffusion from amplification)
- Announcements from Stephen: New Magboltz version 11 is out, includes better simulation of molecular light emission by using the null collision technique
- New Degrad 3.1 before Xmas will inlcude C2H6 update