Position resolution of Gd-GEM detectors for the NMX instrument

Dorothea Pfeiffer

14.12.2016 RD51 miniweek

This work was funded by the EU Horizon 2020 framework, BrightnESS project 676548

NMX detectors

Reflections of example crystal

EUROPEAN EUROPEAN
SPALLATION SOURCE

Bovine heart cytochrome c oxidase P2|2|2।
$\mathrm{a}=182.59 \AA$
$b=205.40 \AA$
$\mathrm{c}=178.25 \mathrm{~A}$
Detector distance 1 m

All reflections

142842 ($3.409 \AA, 134.4 \mathrm{~ms}$) 213549 ($2.809 \AA, 110.8 \mathrm{~ms}$) 152943 ($3.309 \AA$ À, 130.5 ms) 223650 ($2.739 \AA$ A, 108.0 ms) 163044 ($3.215 \AA$ A, 126.8 ms) 233751 ($2.672 \AA$ A, 105.4 ms) 173145 ($3.124 \AA$ A, 123.2 ms) 243852 ($2.608 \AA \hat{\AA}, 102.9 \mathrm{~ms}$) 183246 ($3.040 \AA, 119.9 \mathrm{~ms}$) 253953 ($2.548 \AA, 100.5 \mathrm{~ms}$) 193347 ($2.959 \AA \AA, 116.7 \mathrm{~ms}$) 264054 (2.489 A, 98.2 ms) 203448 (2.882 A, 113.6 ms)
1.800 to 2.019 Angstroms

- 2.019 to 2.237 Angstroms
- 2.237 to 2.456 Angstroms
- 2.456 to 2.675 Angstroms
- 2.675 to 2.894 Angstroms
- 2.894 to 3.112 Angstroms
- 3.112 to 3.331 Angstroms
- 3.331 to 3.550 Angstroms

Spatial overlaps only
275379 (1.812 Å, 71.4 ms) 224364 ($2.236 \AA, 88.2 \mathrm{~ms}$) 183552 ($2.752 \AA$ À, 108.5 ms) 173349 ($2.920 \AA, 115.1 \mathrm{~ms}$) 193755 (2.602 A, 102.6 ms) 152943 ($3.327 \AA$ À, 131.2 ms) 275277 (1.856 $\AA, 96.4 \mathrm{~ms}$) 265074 (1.933 $\AA, 76.2 \mathrm{~ms})$ 244668 ($2.103 \AA, 82.9 \mathrm{~ms}$) 224262 ($2.306 \AA, 90.9 \mathrm{~ms}$) 214059 ($2.424 \AA, 95.6 \mathrm{~ms}$) 203856 ($2.553 \AA \hat{\AA}, 100.7 \mathrm{~ms}$) 285378 (1.833 $\AA, 72.3 \mathrm{~ms}$)

TOF separation of reflections

Overlap separation with TOF

Requirements and challenges

- $200 \mu \mathrm{~m}$ position resolution (beyond state of art for time resolved neutron detectors)
- High rate requirements with up to $\mathrm{MHz} / \mathrm{cm}^{2}$
- High gain stability and count rate
 stability
- Mechanical robustness (detectors mounted on freely movable robotic arms)
- Reasonable gamma suppression
- Idea: Use GEM detector with Gd converter

Gd-GEM backwards setup

${ }^{10} \mathrm{~B}_{4} \mathrm{C}$ GEM μ TPC Results

- Pristine position resolution $\sigma<200 \mu \mathrm{~m}$ reached with Single GEM
- Detection efficiency $<5 \%$ at normal incidence of neutron

Gd-GEM μ TPC Results

- Position resolution $\sigma<300 \mu \mathrm{~m}$ reached with Triple GEM, APV-25
- Detection efficiency < 12% at normal incidence of neutron

Better tracking algorithms needed

Geant4 Gd simulation problems Getting worse in 10.2.p02

Photon Evaporation 10.1
kinetic energy of gamma

Photon Evaporation 10.2
kinetic energy of gamma

Without Photon Evaporation

Problems with gamma spectra: https://zzz.physics.umn.edu/lowrad/ media/meeting8/ychen gdgammas aarm2015.pdf

Task division Geant4/Garfield++

Arrival position neutron on converter

Arrival time neutron on converter

Arrival position ce in drift

Arrival position Compton e^{-}in drift

Arrival position gamma in drift

Number of conduction electrons in drift

Position of conduction electron that arrives last in time on first GEM

Degrad Simulations

DEGRAD simulation of 70 keV electron in $\mathrm{Ar} / \mathrm{CU}_{2} / \mathrm{U} / 3 \mathrm{U}$ DEGRAD by Steve Biagi: http://magboltz.web.cern.ch/magboltz/

- Only Monte Carlo program that incorporates all relevant physics processes for electrons in gas
- Simulations with Geant4/Garfield interface have to be benchmarked against Degrad
- Check of primary ionization distribution in Geant4/Garfield++

Degrad: Obtainable position resolution in um

$\mathbf{k e V}$	$\mathbf{1 0 \%}$	$\mathbf{2 5 \%}$	$\mathbf{5 0 \%}$	$\mathbf{7 5 \%}$	$\mathbf{9 0 \%}$	$<\mathbf{4 0 0} \mathbf{u m}$
$\mathbf{1 0}$	1	$\mathbf{3}$	7	115	600	83%
$\mathbf{2 0}$	1	3	8	32	1638	78%
$\mathbf{3 0}$	1	3	8	380	3473	75%
$\mathbf{4 0}$	1	3	8	$\mathbf{2 6 5}$	5921	75%
$\mathbf{5 0}$	1	3	8	122	8076	76%
$\mathbf{6 0}$	1	3	7	26	9809	79%
$\mathbf{7 0}$	1	2	7	21	12788	82%
$\mathbf{8 0}$	1	3	6	15	7306	87%
$\mathbf{9 0}$	0	2	7	15	437	89%
$\mathbf{1 0 0}$	0	2	6	13	53	91%
$\mathbf{1 1 0}$	0	2	6	13	57	92%
$\mathbf{1 2 0}$	0	2	6	11	25	94%
$\mathbf{1 3 0}$	0	2	6	12	29	95%
$\mathbf{1 4 0}$	0	2	5	11	23	97%
$\mathbf{1 5 0}$	0	2	6	11	24	96%
$\mathbf{1 6 0}$	0	2	5	11	21	98%
$\mathbf{1 7 0}$	0	2	5	10	20	98%
$\mathbf{1 8 0}$	0	2	5	11	21	98%
$\mathbf{1 9 0}$	0	2	6	12	20	98%
$\mathbf{2 0 0}$	0	2	5	11	22	98%

Infinite volume

- The (x, y) position of the electron with the smallest z position was taken
- 2-25\% of tracks turn back depending on energy
- No drift and diffusion

Summary

- Scattering of neutron considerably deteriorates position resolution
- Two GEM foils instead of three and low material budget readout lead to major improvement
- The position where the conversion electron enters the drift can be reconstructed with <= 400 um precision for ca 90% of all conversion (without diffusion from amplification)
- Announcements from Stephen: New Magboltz version 11 is out, includes better simulation of molecular light emission by using the null collision technique
- New Degrad 3.1 before Xmas will inlcude C2H6 update

