Microscopic simulation of Xenonbased gaseous optical TPCs in the presence of molecular additives

C. Azevedo, S. Biagi, C. Henriques, D. Gonzalez-Diaz and the NEXT collaboration

@RD51 (14/12/2016)

I. The problem

A 'conceptual' magic mixture

(2 candidate molecules identified)

- 1. Able to **reduce electron diffusion** in gas.
- 2. Recombination small.
- 3. Strongly **fluorescent** at higher λ and self-transparent.
- 4. Allows for **EL at lower field** due to low-lying excited states of the additive.
- 5. Suitable for **Penning** transfer. Can potentially reduce Fano factor.
 - $\overline{\mathbf{v}}$

~'low IP/high-reactive type'

Low diffusion/light preserving

(6+ candidate molecules identified)

- 1. Able to reduce electron diffusion in gas.
- 2. **Recombination small.**
- 3. Light mechanisms unaffected.
 - a) Highly transparent to Xenon-light.
 - b) Small quenching for S_1 , S_2 and small fluctuations in EL.

II. The tool

A microscopic software for electron and photon transport in gas

III. Basic considerations

Electron x-sections of relevant gases

10⁻¹⁸

electron energy [eV]

x-sections for molecules that are plot here are actually old ones (just illustrative!)

Ι

Light transparency

Fig. 1. Compilation of photo-absorption coefficients of some relevant TPC admixtures at around T = 300K in the region corresponding to the Xenon 2nd continuum, [9–18]. The reference spectrum from Koehler has been overlaid as a thin continuous line [2]. For H₂, N₂ and CF₄ there is no data in the region shown, and their cross-sections are plausibly orders of magnitude below that of CH₄.

$$\Pi = \frac{1}{P_o} N_o \sigma_a(\lambda)$$

Fig. 2. Estimated transparency to scintillation from Xenon 2nd continuum as a function of partial pressure of the additive, over a 2 meter-long TPC. Dashed lines are obtained assuming 20% errors in the cross-sections.

$$\mathcal{T} \equiv \frac{\int_{o}^{\infty} \frac{dN}{d\lambda} \Big|_{2^{\mathrm{nd}}} e^{-N\sigma_{a}(\lambda)L} d\lambda}{\int_{o}^{\infty} \frac{dN}{d\lambda} \Big|_{2^{\mathrm{nd}}} d\lambda}$$

Light transparency

Fig. 1. Compilation of photo-absorption coefficients of some relevant TPC admixtures at around T = 300K in the region corresponding to the Xenon 2nd continuum, [9–18]. The reference spectrum from Koehler has been overlaid as a thin continuous line [2]. For H₂, N₂ and CF₄ there is no data in the region shown, and their cross-sections are plausibly orders of magnitude below that of CH₄.

$$\Pi = \frac{1}{P_o} N_o \sigma_a(\lambda)$$

Fig. 2. Estimated transparency to scintillation from Xenon 2^{nd} continuum as a function of partial pressure of the additive, over a 2 meter-long TPC. Dashed lines are obtained assuming 20% errors in the cross-sections.

$$\mathcal{T} \equiv \frac{\int_{o}^{\infty} \frac{dN}{d\lambda} \Big|_{2^{\mathrm{nd}}} e^{-N\sigma_{a}(\lambda)L} d\lambda}{\int_{o}^{\infty} \frac{dN}{d\lambda} \Big|_{2^{\mathrm{nd}}} d\lambda}$$

III

Light quenching (generic pathway diagram)

Most serious difficulties related to S₁:

- Distribution of initial excited states?.
- Quenching/decay of Xe^{**}, Xe₂^{**} largely unknown.
- S_2 much more robust (dominated by low-lying states):
- Measurements exist, and scalings work reasonably.

IV. Electron transport + scintillation model

I. Computation of probability distribution of excited states

Degrad

II. Computation of atomic cascade

	decay	collisio	n rates	5											
state (Paschen)	state (Racah)	energy [eV]	$\sum_{j} A_{ij} [\mathrm{ns}^{-1}]$	K_2 @1bar [ns ⁻¹]		$K_3@1b$	ar [ns ⁻¹]								
1s1	-	0.000	-	-			-	² 3-body collision rates							
1s5	$6s[3/2]_2$	8.315	2.33×10^{-11}	4.94×10-5		0.1465									
184	$6s[3/2]_1$	8.437	$0.281/n_{H}$	-		0.0855									
1s3	$6s'[1/2]_0$	9.447	1.28×10^{-8}	0.2224		-									
1s ₂	$6s'[1/2]_1$	9.570	$0.246/n_{H}$	2.4954		-									
$2p_{10}$	$6p[1/2]_1$	9.580	0.026	3.7802			-	each value represents a vector!							
$2p_9$	$6p[5/2]_2$	9.686	0.027	2.7425		-		caen value represents a vector.							
2_{PS}	$6p[5/2]_3$	9.721	0.031	1.8036			-								
$2p_7$	$6p[3/2]_1$	9.789	0.028	4.3979		-									
$2p_{\theta}$	$6p[3/2]_2$	9.821	0.036	2.0062	<u> </u>										
$3d_6$	$5d[1/2]_0$	9.890	4.36×10^{-3}	9.7649			-								
$3d_5$	$5d[1/2]_1$	9.917	$0.015/n_{H}$	4.8328			-								
2p5	$6p[1/2]_0$	9.933	0.031	0.1599		0.4273									
$3d'_4$	$5d[7/2]_4$	9.943	4.34×10^{-3}	4.8676			-		V						
$3d_3$	$5d[3/2]_2$	9.959	8.16×10^{-3}	4.8664	-	$1s_1$	1s5	1s4	1s ₃	1s ₂	2p ₁₀	2p ₉	$2p_8$	$2p_7$	$2p_6$
$3d_4$	5d[7/2]3	10.039	7.34×10^{-3}	4.8510	1s ₁	-	0	0	0	0	0	0	0	0	0
$3d''_1$	$5d[5/2]_2$	10.157	1.21×10^{-3}	4.8649	1s5	1(1)	-	0	0	0	0	0	0	0	0
$3d'_1$	$5d[5/2]_3$	10.220	1.39×10^{-3}	4.8639	1s ₄	0	0 11(2.3)	-	0	0	0	0	0	0	0
$3d_2$	$5d[3/2]_1$	10.401	$3.04 \times 10^{-3}/n_H$	1.3637	183	0	0.010 ^(2,3)	0.079 ^(2,3)	0.247 ⁽³⁾	-	0.663 ⁽⁴⁾	0	0	0	0
285	$7s[3/2]_2$	10.562	0.018	4.9415	2p10	0	0.014 ⁽³⁾	0.116 ⁽³⁾	0.216 ⁽⁴⁾	0.654 ⁽⁴⁾	-	0	0	0	0
284	7s[3/2]1	10.593	$0.178/n_{H}$	4.9415	2p9	0	0	0	0.3604 ⁽⁴⁾	0.1351(3)	0.405(4)	-	0.099(4)	0	0
$3p_{10-5}^{*}$	-	10.902	0.010	12.6008	2p8	0	0	0	0.178(3)	0.110(3)	0.245(3)	0.466(3)	-	0	0
$2p_4$	$6p[3/2]_1$	10.958	0.024	10.3277	2p7	0	0	0	0.348(3)	0(2)	0.011(2)	0.067(2)	0.539(2)	-	0.034(3)
$4d_{10-6,4,3}^{*}$	-	10.971	0.014	5.9298	2pg		-	0	0.234(-7	0.001	0.001(-)	0.343	0.233(-)	0.101(-)	-
4d5	$6d[1/2]_1$	10.979	0.018	4.8426		-									
$2p_3$	$6p[3/2]_2$	11.055	0.036	11.6125		-									
$2p_2$	$6p[1/2]_1$	11.069	0.033	10.3277		-									
$2p_1$	$6p[1/2]_0$	11.141	0.027	10.4018		-									
$4d_2$	6d[3/2]1	11.163	$0.716/n_{H}$	4.8674		-									
Xe**	-	11.7	-	12.35		-									

III. Excimer pathways

Example of light production code (population evolution from $2p_{10}$)

Example of electron transport + light production code

V. Comparison with pure xenon data

Time distributions

VI. Comparison with xenon + additives

Electroluminescence (yield)

Electroluminescence (light fluctuations, Q)

VII. Fine, but what is happening here?

 $\sim 1/(1 + \tau K_2 f)$!

if assuming $~\tau=\tau_{_{3\Sigma}}$

and the quenching rate of s_5 state in CF_4 :

$$K_{Q,s_5(M)} = 0.074 \text{ ns}^{-1}$$

Predicts a 0.3% scintillation drop in the range of concentrations shown...

An analytic picture... and a simple one (II)

- This simple picture (triplet dominance) describes the quenching effect in earlier data by Suzuki for Ar-CO₂ and Ar-CH₄ (1983) and Conde and Policarpo for Xe-N₂ (1968),quantitatively!
- It does describe the data for Xe-CH₄ from GIAN group (Carlos Henriques), but with a quenching rate for the excimer that is about x4-x8 less than that of the atom (!). This seems to enable CH_4 for high pressure operation in NEXT, and its figure of merit perhaps even surpasses the one from CO_2 , contrary to the initial expectations...

still a lot to learn from good measurements!

Ambiguities in the scintillation model (I)

inter-nuclear distance

Ambiguities in the scintillation model (II)

conclusions I (projections for NEXT)

10 bar for EL=3KV/cm/bar (at Q_{bb})

conclusions II (Ozkan/Rob's feedback parameter β)

Secondary avalanches in gas mixtures

Özkan Şahin ^{a,*}, İlhan Tapan ^a, Rob Veenhof ^b

^a Department of Physics, Uludağ University, 16059 Bursa, Turkey ^b RD51 Collaboration, CERN, Genève, Switzerland

Fig. 2. Photon feedback β versus quencher fraction. The circles are fits using Eq. (1) and the solid lines are proportional to $1/f_q$

Fig. 3. Photon feedback β versus partial pressure of C₃H₈. The circles are fitted feedback parameters and the solid lines are the fits with $1/(f_q p_{gas})$.

VI. Appendix

Extrapolations for primary and secondary light for CO2/CH4/CF4

