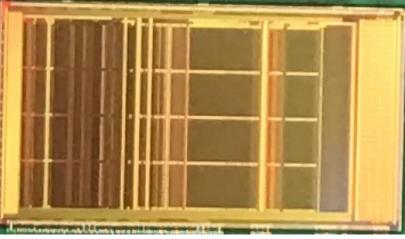

VMM3 Early Testing

George Iakovidis, V. Polychronakos Brookhaven National Laboratory

RD51 December 12, 2016

Path Towards VMM3

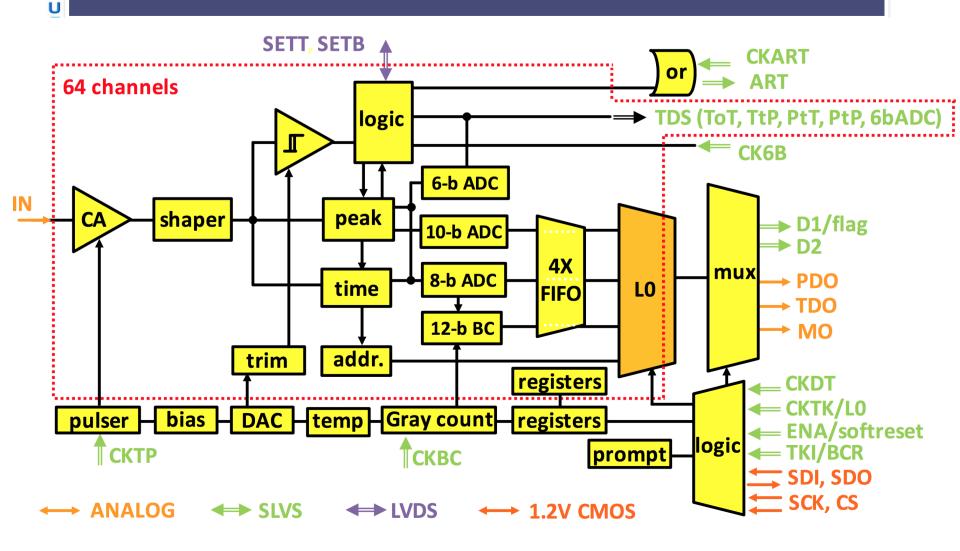

VMM1 (2012) 50 mm² 500k MOSFETs (8k/ch.)

- mixed-signal
- 2-phase readout

VMM2 (2014) 115 mm²

> 5M MOSFETs (>80k/ch.)

- planned deep re-design of VMM1
 much higher functionality and
- complexity than VMM1
 - continuous fully-digital readout



- VMM3 (2015-16) 130 mm² > 6M MOSFETs
- L0 handling, SEU-tolerant, SLVS IOs, deeply revised front-end for sTGC signals, various additional functions, various fixes

 input from many collaborating teams with broad range of expertise

aims at pre-production

VMM3 Block Diagram

VMM3 in the Last few months

Design submitted to MOSIS May 1, 2016

- TDS and ART chips (ATLAS NSW) were included in the reticle
- 6 Engineering Wafers Received at MOSIS July 27
- Die Received at BNL in early August
 - Yield almost 100%
 - ~700 VMM3
- BGA Substrate layout completed in mid-September, checked and sent for fabrication


25 Production wafers were received at BNL end of September

- Three wafers stolen on the way to a subcontractor in Marseille
- Remaining are being packaged by Novapack (Grenoble, FR)
- Received 150 packaged chips two weeks ago

VMM3 Early Tests

- Received wire-bonded mini-one about a month ago (lab was being moved)
- Use LabView based system (CDAQ, J. Fried, W. Ding)
- VMM3 specific firmware mods
- UAz group assembled 2 boards with a socket base
- Brought one at CERN last week
- Same system but now many chips can be tested
- Testing here by G. lakovidis (with Sorin for the L0 interface)
- Similar setup at BNL
- Work there by W. Ding, A. Gupta and Gianluigi
- A few more of these boards will be available (UAz) in a couple of weeks

Improvements

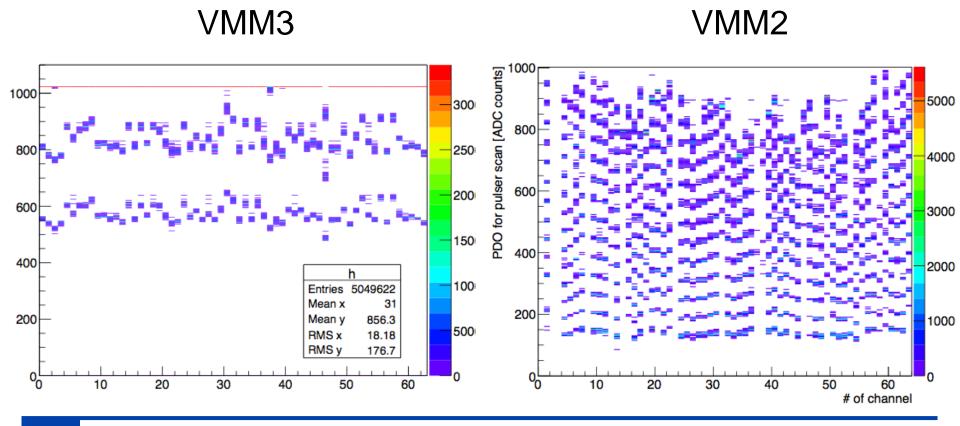
	lssue	Circuit	Solution	Sta	tus	Schedule		
	issue	Circuit	Solution	sch	lay	Schedule		
	Handling sTGC signals*	Analog front-end	Fbk time const., fbk capac, dyn. curr., tail-canc.,	\checkmark	~	\checkmark		
OK	Early saturation*	Current-out peak detector	Matching, power distribution	\checkmark	\checkmark	\checkmark		
*	MSB accumulation*	Current-out peak detector & ADC	Matching, optimization, parasitic reduction	in com	pletion	Feb. 2016		
OK	Pulser DAC saturation	DAC bias circuit	Optimization and biasing	\checkmark	\checkmark	\checkmark		
OK	Pulser rise-time and noise	Pulser circuit and injection switch	Redesign and switches optimization	\checkmark	\checkmark	\checkmark		
OK	Prompt output disabled	Control logic	Dedicated bit	\checkmark	\checkmark	\checkmark		
OK	Event loss	ADC reset logic	Logic fix	\checkmark	\checkmark	\checkmark		
OK	Threshold bit error	Discrimination logic	Logic fix	\checkmark	\checkmark	\checkmark		
OK	BCID advance-latch issue	Gray-code counter	Clock inversion	\checkmark	\checkmark	\checkmark		
OK	Other data integrity issues*	Data, token & FIFO logic	Logic fixes and parasitic reduction	~	~	\checkmark		
OK	Counter turnaround	Counter logic	Logic fix	\checkmark	\checkmark	\checkmark		
	Front-end off w/SFM	Analog front-end	Fbk loop	\checkmark	\checkmark	\checkmark		
	Peak detect hold time*	Hold node	Dual input stage	~	~	\checkmark		
	Buffer float at bypass	Buffer input stage	Add switch	~	✓	~		

⁵ *most demanding tasks OK= Tested, no problems found but more detailed work needed to fully effective it OK = Verified OK

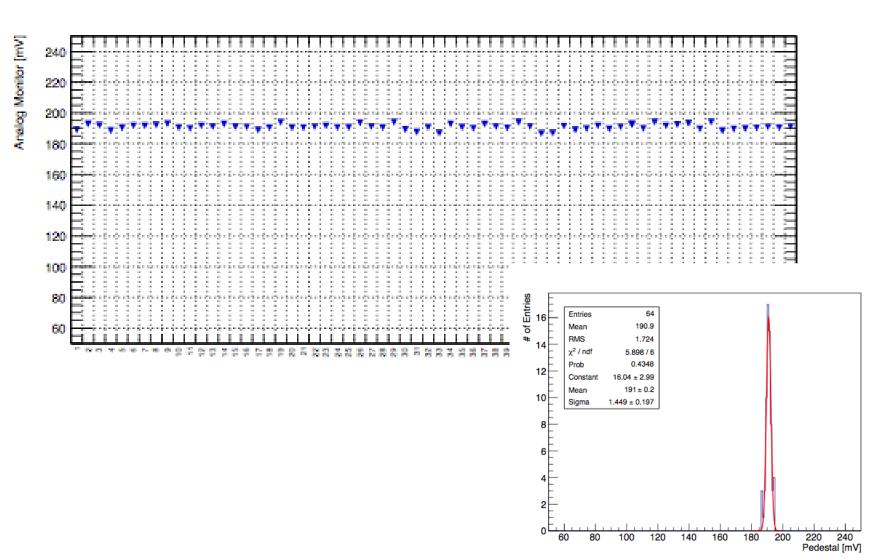
> OK = Tested seems to work but observe issues that need to be understood or workaround available

Right MSB accumulation aka ADC problem shows similar behavior to the VMM2 but do not know extend 6

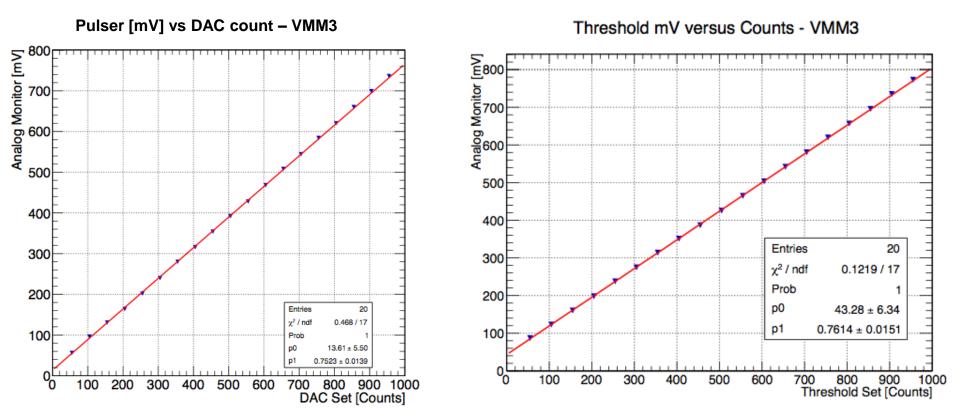
Additional Functions

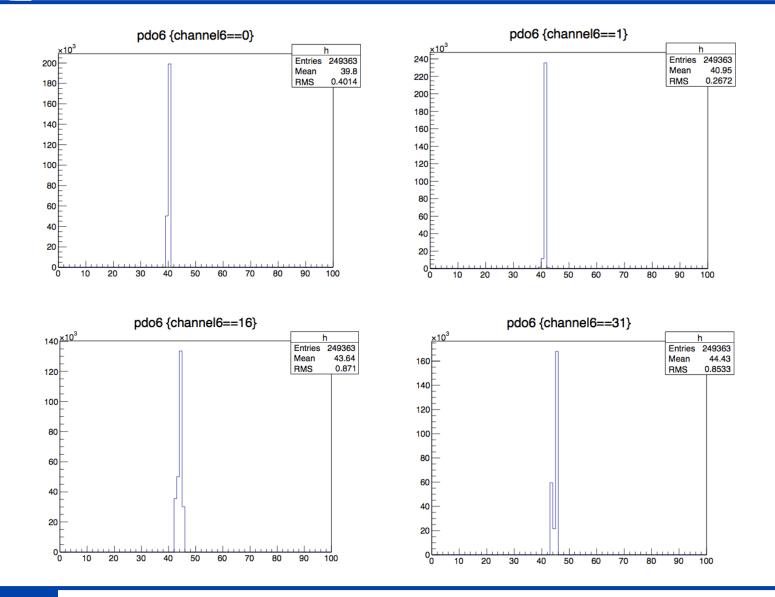

	Function	Circuit	Comment	Sta	atus	Expected		
	Function	Circuit	Comment	sch lay		Completion		
	Handling sTGC capacitance*	Analog front-end	Fbk capac., dyn. current	\checkmark	~	\checkmark		
OK	L0 handling logic*	Digital implementation	Collab. w/ Sorin Martoiu	in com	pletion	Feb. 2016		
OK	Simultaneous high-res. & prompt readout*	Various logic changes	Programmable early stop also added	~	\checkmark	\checkmark		
OK	Single-ended configuration and global reset	Configuration logic and IOs	CS active low, high-Z SDO with CS	~	~	\checkmark		
OK	SLVS-400 IOs	IOs	Program. termination	\checkmark	\checkmark	\checkmark		
	Timing ramp optimization	Timing circuit	60, 100, 200, 400ns	\checkmark	\checkmark	\checkmark		
	Timeout ramp autoreset	Timing circuit	Programmable > 800ns	\checkmark	\checkmark	\checkmark		
OK	Acquisition reset on ENA	Control logic	Falling edge	\checkmark	\checkmark	\checkmark		
	32-channel skip	Inter-channel logic	Skip 17-48	\checkmark	\checkmark	\checkmark		
OK	ART flag synchronization	ART logic	Programmable synk/async	\checkmark	\checkmark	\checkmark		
	SEU tolerant registers	Configuration logic	DICE	\checkmark	\checkmark	\checkmark		
	SEU tolerant state logic	State logic	Redundant and locking	\checkmark	\checkmark	\checkmark		
OK	Pulser range extension	Injection circuit	Programmable capacitor	\checkmark	\checkmark	\checkmark		
	Timing ramp at threshold	Timing circuit	Programmable thr. vs peak	\checkmark	\checkmark	\checkmark		

⁶ *most demanding tasks


• Distribution of PDO across all the channels, early saturation seems to be fixed.

Early saturation comparison


03/12/2014


03/12/2014

03/12/2014

6-bit adc (sTGC direct outputs)

VMM3 Operating Modes

There are basically four Data Acquisition modes

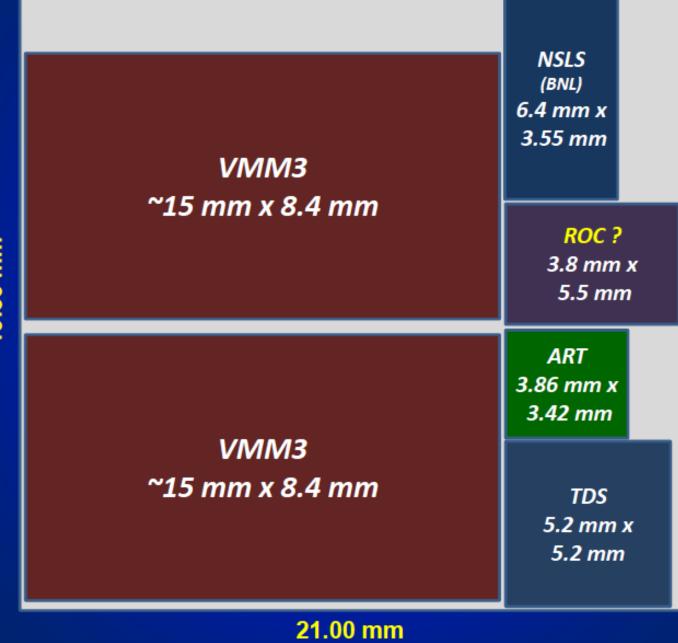
- Analog Mode (with external Digitizer, e.g. SRS C-card)
- Digital triggered mode (digital SRS card)
- Continuous triggered deadtimeless mode (simultaneous read/write)
- Continuous triggerless mode
- In the two continuous modes the digital output is in form of GBTx compatible e-links
 - Can handle up to 1 MHz trigger rate
- Two primitives can be used for Trigger
 - Fast OR with address of the first hit strip
 - Parallel prompt output of 6-bit amplitudes that can be used for a more complex trigger (50 ns digitization)

L0 testing - Screenshot from the scope

Ê	File 1 Vertical	+ Timebase	Trigger	🖼 Display	Cursors	E Measure	Math	🗠 Analysis	🗙 Utilities	Support			
c	KTK/L0							2					D0
20-			חחח									ההההההההה	
1.00													
~B	NA							-					(D6
_	s												D7
	- CK I I I I						a 10 10 -						D8-
-	DI							-					D9
								-		_		-	
D	ATÁI												D12
M	Rithly an and the second second			www. Upwrw	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		internetien andere fan de service		Appropriation	ulterthe water regulations	****	lighten gi ^{ll} holman sograf an san shar fan star barra san s	ter Manufacture and a state of the state of
T	ко							-					D14
6	B							-					D15
61								4					
ଦ୍ୱୀ 		itan (16)	30	A	Rec.	19		I		15	5ł	Timebase -1	30 µs Trigger D5
TE	100 mV/div -407.50 mV	1.25 GS/s 6.25 kS										12.5 kS 2.5	Auto 1.50 V GS/s Edge Positive
IEL	EDYNE LECROY												1/2/2009 7:41:59 PM

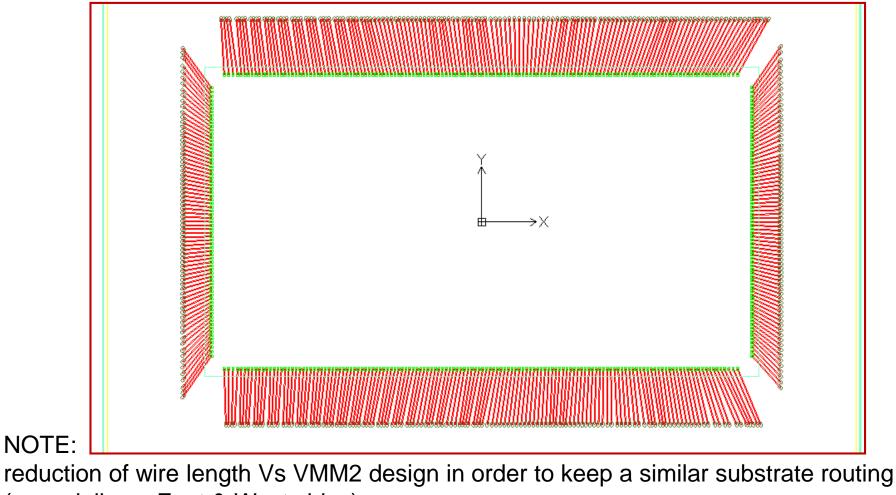
03/12/2014

13

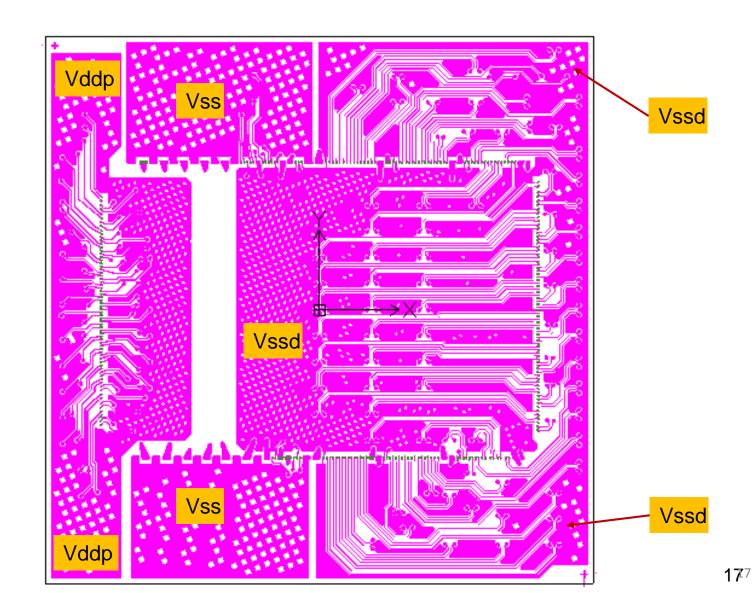


Continuous Triggered Readout

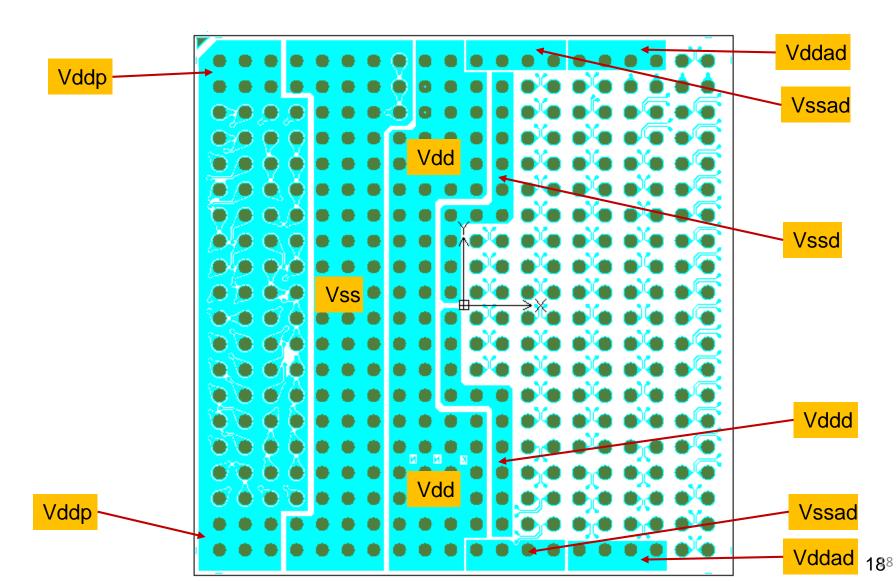
- L0 logic enable works correctly, the core is functioning
- IDLE state works (after swapping the DATA0/1 lines), comma character 0xBC is there (k28.5)
- OCR, BCR works correctly
- Header format is correct, BCID is identified correctly
- Data format is correct, relative BCID works correctly
- Multiple L0 give the correct amount of DATA
- Registers are handled correctly
- 8b/10b encoding works correctly
- Truncation works
- Stress tests will be performed to evaluate system performance on overflows


Wafer Reticle Occupancy

19.50 mm


BONDING DIAGRAM

(especially on East & West sides)



LAYER M1 (top layer)

LAYER M2 (bottom layer)

BALL-OUT BGA 21x21-400 balls VMM3 DICE

	Vddp	Vddp	Vddp	Vss	Vss	Vss	Vss	tdo	Vdd	Vdd	v ssad	v ssad	v ssad	v ssad	v ddad	v ddad	v ddad	v ddad	+ SE	Π-
3	Vddp	Vddp	Vddp	Vss	Vss	Vss	Vss	pdo	Vdd	Vdd	Vdd	Vssd	+ TK	0 -	+ Cł	СТР -	SDI	SDO	cs	SCK
	i0	i1	i2	i3	Vss	Vss	Vss	mo	Vdd	Vdd	Vdd	Vssd	+ TI	d -	+ Ck	BC-	+El	NA -	+ Cł	(6B -
)	i4	i5	i6	ī7	Vss	Vss	Vss	Vdd	Vdd	Vdd	Vdd	Vssd	+ CK	ТК -	+ D	TO -	+D	T1 -	+CK	ART-
	i8	i9	i10	i11	Vss	Vss	Vss	Vdd	Vdd	Vdd	Vdd	Vssd	+ A	RT -	+ CK	DT-	+ 1	0 -	+ 1	1 -
	i12	i13	i14	i15	Vss	Vss	Vss	Vdd	Vdd	Vdd	Vdd	Vssd	+ t	2 -	+ 1	3 -	+ 1	4 -	+ 1	5 -
	i16	i17	i18	i19	Vss	Vss	Vss	Vdd	Vdd	Vssd	Vssd	Vssd	+ t	6 -	+ 1	7 -	+ 1	8 -	+ 1	9 -
	i20	i21	i22	i23	Vss	Vss	Vss	Vdd	Vdd	Vssd	+ ti	10 -	+ t:	1 -	+ t	2 -	+ t	13 -	+ t	14 -
	i24	i25	i26	i27	Vss	Vss	Vss	Vdd	Vdd	Vssd	+ ti	15 -	+ t1	.6 -	+ t	17 -	+ t	18 -	+ t	19 -
	i28	i29	i30	i31	Vss	Vss	Vss	Vdd	Vdd	Vssd	+ t2	20 -	+ t2	1 -	+ ť	22 -	+ t	23 -	+ t	24 -
	i32	i33	i34	i35	Vss	Vss	Vss	Vdd	Vdd	Vddd	+ t2	25 -	+ t2	26 -	+ ť	27 -	+ t	28 -	+ t	29 -
	i36	i37	i38	i39	Vss	Vss	Vss	Vdd	Vdd	Vddd	+ t2	30 -	+ t3	1 -	+ t	32 -	+ t	33 -	+ t	34 -
	i40	i41	i42	i43	Vss	Vss	Vss	Vdd	Vdd	Vddd	+ t2	85 -	+ t3	6 -	+ t	7 -	+ t	38 -	+ t	39 -
	i44	i45	i4G	i47	Vss	Vss	Vss	Vdd	Vdd	Vddd	/ddd	/ddd	+ t/	0 -	+ t4	11 -	+ t	12 -	+ t	43 -
	148	149	150	151	Vss	Vss	Vss	Vdd	Vdd	Vdd	Vdd	vddd	+ t	44 -	+ t4	15 -	+ t	46-	+ t	47 -
	i52	i53	i54	i55	Vss	Vss	Vss	Vdd	Vdd	Vdd	Vdd	Vddd	+ t4	8 -	+ t4	19 -	+ t	50 -	+ t	51 -
	i56	i57	i58	i59	Vss	Vss	Vss	Vdd	Vdd	Vdd	Vdd	Vddd	+ t5	2 -	+ t!	3 -	+ t	54 -	+ t	55 -
	i60	i61	i62	i63	Vss	Vss	Vss	Vdd	Vdd	Vdd	Vdd	Vddd	+ t5	6 -	+ t	7 -	+ t	58 -	+ t	59 -
	Vddp	Vddp	Vddp	Vss	Vss	Vss	Vss	Vdd	Vdd	Vdd	Vdd	Vddd	+ t6	60 -	+ t(51 -	+ t	52 -	+ t	63 -
1	Vddp	Vddp	Vddp	Vss	Vss	Vss	Vss	Vdd	Vdd	Vdd	V stad	V ssad	V ssad	V ssad	V ddad	V ddad	V ddad	V ddad	+ SE	тв -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

NOTE: SLVS = differential pairs (100 Ohms) 99

Summary, Next Steps

- So far VMM3 seems to be mostly OK
- Differential nonlinearity of the 10-bit and 8-bit ADC still there but perhaps to a lesser extend, testing is on-going
- Analog mode (of interest perhaps to the RD51 community) is fine and can be used if desired
- Samples can be available to those interested
 - ~30 unpackaged dice reserved for RD51 tests
- If ADC performance is good enough for NSW a large order will be placed ~May 2017.
- We can add quantities for any group that may be interested
- No export license needed
 - CERN working for a universal license for all ASICs fabricated by Global Foundries, please check with P. Farthouat