Search for keV-scale dark matter candidates with the $$\operatorname{GERDA}$$ experiment

Rizalina Mingazheva

University of Zurich

June 15th 2017

The concept of the GERDA experiment

- 1 Clean room
- 2 Cherenkov Muon Veto
- 3 Liquid argon cryostat
- 4 Germanium detectors array
- Located at underground laboratory LNGS, Italy
- Utilizes high pure germanium detectors, operated in liquid argon
- The main physics goal: search for $0\nu\beta\beta$ decay
- Aims to contribute to **bosonic super-WIMPs** search

The concept of the GERDA experiment

- 1 Clean room
- 2 Cherenkov Muon Veto
- 3 Liquid argon cryostat
- 4 Germanium detectors array
- Located at underground laboratory LNGS, Italy
- Utilizes high pure germanium detectors, operated in liquid argon
- The main physics goal: search for $0\nu\beta\beta$ decay
- Aims to contribute to bosonic super-WIMPs search

The bosonic super-WIMPs

- Cold or warm DM particles, depending on their mass
- Has super-weak coupling to the baryonic matter
- Can exist in form of two possible candidate types:
 - Pseudo-scalar (ALP)
 - Vector (hidden photon)
- Can be detected via absorbtion by the atom, due to axioelectric effect
- The signature in the energy spectra: gaussian peak with the mean at the mass of the absorbed super-WIMP

Pospelov et. al. Phys. Rev. D 78, 115012

The expected signal rate in ⁷⁶Ge

- Depends on the σ_{photo}/A
- Decreases with the mass

Current status of the experimental search

- Astrophysical constrains
- Direct detection constrains

 The aim of GERDA: to extend the direct search range for bosonic Super-WIMPs to 1 MeV

Background for the super-WIMP search

2νββ: topology is similar to the super-WIMP (SSE)

³⁹Ar: can be distinguished due to different pulse shape (MSE)

The expected signature

• For the pseudo-scalar with the coupling $g_{Aee} = 4 \cdot 10^{-11}$

• We need to discriminate background and peform statistical analysis to set the exclusion limit

Conclusion and outlook

- Bosonic super-WIMP is theoretically motivated for warm/cold DM candidate
- With its high efficient background rejection technique GERDA is sensitive to pseuso scalar and vector super-WIMPs
- The mass region upto 1MeV for existed limits can be extended
- · The profile likelihood analysis is under development
- The results for the total exposure of 40 kg*yr will come soon :)