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Need for QCD factorization:  

Description of hadronic reactions involves QCD calculations 
at both high and low energies. However, QCD is poorly 

known at low energies; the confinement problem has not 

been solved, so approximation methods are needed to 

mimic the straightforward QCD calculations at low energies. 
QCD factorization is the most popular approximation 

method.  

 

Essence of QCD factorization:  
Step 1: non-perturbative inputs are introduced through either 

models or fits. 

Step 2: the inputs are evolved with perturbative means 

(evolution equations).  
 

Comment: non-perturbative inputs are introduced without 

theoretical grounds. I focus on theoretical restrictions on the 

inputs  
 



Scenarios  of hadronic collisions at high energies                                
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Single-Parton Scenario for the parton-hadron scattering                               
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Single-Parton Scenario is much more popular than Multi-Parton one, 
so in the present talk I will focus on SINGLE-PARTON COLLISIONS  

though a generalization of our results to Multi-Parton Scattering is 

easy to obtain                               

NPQCD 
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    Collinear Factorization  

 S. Catani - M. Ciafaloni – F. Hautmann; 

                                            J.C. Collins- R.K. Ellis 

Amati-Petronzio-Veneziano, Efremov-Ginzburg-Radyushkin, Libby-Sterman,  

Brodsky-Lepage, Collins-Soper-Sterman 

  

KT- Factorization/High-Energy Factorization  

These two conventional forms of  factorization were introduced from  

different considerations and are used for different perturbative  
approaches 

 

 Recently we suggested a new, more general kind of factorization:  

Basic Factorization  

We showed how to reduce it step-by-step to KT and Collinear  

Factorizations, keeping the non-perturbative inputs in a general form 

The  forms of  QCD factorization available  in the literature: 
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Collinear Factorization  KT- factorization  

Pictures look identically but formulae differ 

NB Standard Feynman diagram technique cannot be 

applied to  these graphs 

Conventional illustrations of Factorizations 



 KT Factorization 
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Perturbative terms are calculated  

with  evolution equations 

Parton distributions are found from  

phenomenological considerations 

 fraction of longitudinal  moment  

Collinear Factorization 

Analytic expressions  for parton distributions 

Unintegrated parton 

distribution  

integrated parton 

distribution  

factorization scale 
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    Collinear Factorization  

Different Factorizations imply different parameterizations of 
momenta of the connecting partons  

p 

k 

  KT Factorization  

momentum 
fraction 



  Actual situation with the parametrization is more involved: 

                                 and all components of k should be accounted  for k =[𝒌𝟎, 𝒌𝒙, 𝒌𝒚, 𝒌𝒛] 

For instance, all of them are present in Sudakov representation 

𝒌 =  𝜶 𝒒 +  𝜷 𝒑 + 𝒌⟘ 

Kinematical contents of       and          𝜶  𝜷  

𝑝  

𝑘 

pk  || 

k
𝜽 

𝜽 ≪ 𝟏 

 

𝜶 ≈
  𝝎

𝟒𝑬
𝜽𝟐 𝜷 ≈

  𝝎

𝑬
 

  by this reason  the       -dependence looks less important        

compared to   the          -dependence 

𝜶  

𝜷  

parton energy 

hadron energy 



D(𝑺𝒒, 𝑺𝒉,w,q2) =  
𝒅𝜷

𝜷
 𝒅𝟐𝒌⊥𝒅𝜶 𝑫

𝒑𝒆𝒓𝒕 (𝑺𝒒,𝒘𝜷,𝒒
𝟐, 𝒌𝟐)

𝑩

𝒌𝟐𝒌𝟐
 𝚽 𝑺𝒉,𝒘𝛂,𝒌

𝟐  

new integration 

hadron spin 

non-perturbative totally 

unintegrated input 

When       -dependence is taken into account we arrive at a new form of QCD 

factorization: Basic Factorization 

It is the most general form of QCD factorization 

perturbative part 

𝜶 

 parton spin 

𝑩 =  𝒌𝟐⊥ for non-singlet distributions,  
                  including spin-dependent ones 
𝑩 = 𝟐𝒑𝒒 ≡ 𝒘 for the unpolarized gluon distribution 

 propagators of 

active partons 

𝒌𝟐= - w 𝜶 𝜷 − 𝒌𝟐
⟘ 



Optical  theorem relates the parton distributions to  
parton-hadron scattering amplitudes in the forward kinematics 

  

For instance, the gluon-hadron scattering  

amplitude A is represented as follows:         

perturbative part 

Non-perturbative 

input 

active gluons 

  𝑨 𝒑𝒆𝒓𝒕  

A= 

𝑻 

NB: in contrast to KT and Collinear Factorizations, one can apply the 

standard Feynman rules to the graphs in Basic Factorization in order 
to obtain analytic expressions . Doing so, we arrive at the expression 
for the gluon-hadron scattering amplitude A  

gluon  

hadron  



integration over momentum k covers the  whole phase space  

A(𝑺𝒒, 𝑺𝒉,w,q2) = 

 −𝒊 
𝒅𝜷

𝜷
𝒅𝟐𝒌⊥  𝒅𝜶  𝑨

𝒑𝒆𝒓𝒕 (𝑺𝒒,𝒘𝜷, 𝒒
𝟐, 𝒌𝟐)

𝑩

𝒌𝟐𝒌𝟐
𝑻 𝑺𝒉,𝒘𝛂,𝒌

𝟐  

Then one should do all the integrations  

 

However, the integrand has singularities which must be regulated 
before integrating because the integration should yield a finite result 

Perturbative 
contribution 

gluon propagators 

Result of  dealing with 
gluon polarizations  

Non-

perturbative 
input 

For simplicity,  

I will skip this 

factor in what 
follows 



        HANDLING THE SINGULARITIES : 

 

Group A:  

IR and UV singularities of the perturbative amplitude A(pert) 

taken alone 

Solution:  IR singularities are in PQCD regulated by  external momenta 

k2  and q2 Therefore A(pert) is IR stable as long as k2  and q2 are not 

equal to zero.  
UV singularities in Pert QCD are known to be absorbed by redefinitions 

of  the couplings and masses.  

 

Group B: However, after the regularized  A(pert)  has been substituted   
into the convolution, the problem of IR and UV singularities appears 

once again    

Solution is more involved  

 
 



Requirement  of  stability of factorization convolutions leads to theoretical 

restrictions on non-perturbative inputs T 

 WAY OUT:  input T should kill both IR and UV divergences in order to  

ensure IR and UV stability of the factorization convolutions  

A(𝑺𝒒, 𝑺𝒉,w,q2) = 

 
𝒅𝜷

𝜷
 𝒅𝒌𝟐⊥𝒅𝜶 𝑨

𝒑𝒆𝒓𝒕 (𝑺𝒒,𝒘𝜷, 𝒒
𝟐, 𝒌𝟐)

𝑩

𝒌𝟐𝒌𝟐
𝑻 𝑺𝒉,𝒘𝛂, 𝒌

𝟐  

IR divergence: 

Integration over k2  runs through the point  k2 =0 and we cannot introduce a IR 

cut off because there is no any physical reason to restrict the phase space  

 
UV divergence: 

Integration over 𝜶   runs:    − ∞ < 𝜶 <  ∞  
 so it can yield a diverging result at large  | 𝜶 |  

Double pole at k2 = 0 



These restrictions can be regarded as criteria to select models for non-

perturbative inputs T 

𝑻 ~ 𝒌𝟐
𝟏+𝜼

 at small 𝒌𝟐, with 𝜼  > 0 

 
𝑻~ 𝜶 −𝜿 at large |𝛂|, with 𝛋  > 0 

 

UV stability 

IR stability: 

A(𝑺𝒒, 𝑺𝒉,w,q2) =  
𝒅𝜷

𝜷

𝒅𝒌⊥
𝟐

𝒌𝟐
  𝒅𝜶  𝑨 𝒑𝒆𝒓𝒕 (𝑺𝒒,𝒘𝜷,𝒒

𝟐, 𝒌𝟐) 𝑴 𝑺𝒉,𝒘𝛂,𝒌
𝟐  

Reduction of Basic Factorization to KT and Collinear Factorizations 

 

Basic Factorization:   

𝑻 = 𝒌𝟐𝑴 



A(w,q2) =  
𝒅𝜷

𝜷

𝒅𝒌⊥
𝟐

𝒌𝟐
       𝒅𝜶  𝑨 𝒑𝒆𝒓𝒕 (𝒙/𝜷, 𝒒𝟐/𝒌𝟐) 𝑴 𝒘𝛂, 𝒌𝟐  

A(w,q2) = 

However, such a reduction cannot be done in the straightforward way 
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𝒅𝜷

𝜷
          

𝒅𝒌⊥
𝟐

𝒌𝟐
𝒅𝜶  𝑨 𝒑𝒆𝒓𝒕 (𝒙/𝜷, 𝒒𝟐/𝒌𝟐) 𝑴 𝒘𝛂, 𝒌𝟐  
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 kkqxA KT

pert

KT Integral does not correspond to the product  

Integral does not correspond to  

In order to get the products, the both reductions should not 

 involve integrating the perturbative contributions 



Reduction of Basic Factorization to KT  Factorization 

 
𝒅𝜷

𝜷

𝒅𝒌⊥
𝟐

𝒌𝟐
𝒅𝜶  𝑨 𝒑𝒆𝒓𝒕 (𝒙/𝜷, 𝒒𝟐𝜷/𝒌𝟐) 𝑴 𝒘𝛂, 𝒌𝟐  

Integration over  𝜶  should be performed without involving    𝑨 𝒑𝒆𝒓𝒕     

Problem:    𝑨 𝒑𝒆𝒓𝒕  depends on   𝜶  because    𝒌𝟐= -w 𝜶 𝜷 − 𝒌𝟐
⟘ 

This dependence can be neglected if the essential integration region 

is         𝜶 ≪ 𝒌𝟐
⟘ /𝒘𝜷    In this case 𝒌𝟐 ≈ −𝒌𝟐

⟘  and we arrive at  

 
𝒅𝜷

𝜷

𝒅𝒌⊥
𝟐

𝒌⊥
𝟐   𝑨 𝒑𝒆𝒓𝒕 (𝒙/𝜷, 𝒒𝟐/𝜁) 𝑴𝑲𝑻 𝜻, 𝜷  

𝑨 = 

𝑨 = 

where 𝜻 =  𝒌⊥
𝟐
/ 𝜷  



𝑴𝑲𝑻 𝜷, 𝒌⊥
𝟐   =   𝒅 𝜶 𝑴 𝒘𝜶, 𝒌𝟐  

𝜻

−𝜻

 

and new the non-perturbative input is  

Applying Optical theorem, we arrive at the gluon distribution  
in KT Factorization  

𝑫𝑲𝑻 𝜷, 𝒌⊥
𝟐   =  

 𝒅 𝜶 𝑴 𝒘𝜶, 𝒌𝟐  
𝜻

−𝜻

 

 
𝒅𝜷

𝜷

𝒅𝒌⊥
𝟐

𝒌⊥
𝟐   𝑫𝑲𝑻

𝒑𝒆𝒓𝒕 (𝒙/𝜷, 𝒒𝟐/𝜁) 𝝋𝑲𝑻 𝜷, 𝒌⊥
𝟐  

𝝋𝑲𝑻 𝜷, 𝒌⊥
𝟐 = Im 

with 



Reduction of KT  Factorization to Collinear Factorization 
 
We should integrate out the 𝜻 -dependence in  

 
𝒅𝜷

𝜷

𝒅 𝜻

𝜻
  𝑫𝑲𝑻

𝒑𝒆𝒓𝒕 (𝒙/𝜷, 𝒒𝟐/𝜁) 𝝋𝑲𝑻 𝜻, 𝜷  

However, it should be done without integrating   𝑫𝑲𝑻
𝒑𝒆𝒓𝒕 , 

 which is possible only if  𝝋𝑲𝑻   depends on 𝜻   

in the sharp-peaked way  

 
NB: all the peaks are located in domain of Non-Perturbative of QCD   

= 

𝑫𝑲𝑻 𝜷, 𝒌⊥
𝟐   =   

𝒅𝜷

𝜷

𝒅𝒌⊥
𝟐

𝒌⊥
𝟐   𝑫𝑲𝑻

𝒑𝒆𝒓𝒕 (𝒙/𝜷, 𝒒𝟐/𝜁) 𝝋𝑲𝑻 𝜷, 𝒌⊥
𝟐  

𝛇 =  𝐤⊥
𝟐/ 𝛃 



𝝋𝑲𝑻(𝜻, 𝜷) 

𝜻  

2

1
2

3
2

2

The number of peaks is arbitrary. The  maximums can have different heights 

and widths The sharper the peaks are, the better is accuracy of the reduction 

𝜻  

𝝋𝑲𝑻(𝜻, 𝜷) 

Scenario with 
single peak 

Multi-peak scenario 
SOLITON? 

2

1



𝑫𝒄𝒐𝒍 =  
𝒅𝜷

𝜷
  𝑫𝒄𝒐𝒍

𝒑𝒆𝒓𝒕 (𝒙/𝜷, 𝒒𝟐/𝝁𝒓
𝟐) 𝝋𝒓 𝝁𝒓

𝟐, 𝜷   

𝑟

 

After integration we arrive at the gluon distribution in Collinear Factorization  

 
𝒅𝜷

𝜷
  𝑫𝒄𝒐𝒍

𝒑𝒆𝒓𝒕 (𝒙/𝜷, 𝒒𝟐/𝝁𝟏
𝟐) 𝝋𝟏 𝝁𝟏

𝟐, 𝜷  𝑫𝒄𝒐𝒍 = 

Single-peak scenario 

Multi-peak scenario 

The mass scale(s)  𝝁𝟏 (𝝁𝒓)    cannot be associated with the conventional  

factorization scale  𝝁𝑭because they do not vanish in the convolutions. 

Their values cannot be chosen arbitrary: they correspond to location of the  
maximums. We call them inherent mass scale(s)   

Non-perturbative inputs 



Comparison to the conventional  form of  Collinear Factorization 

 
Usually the paron distributions in Collinear Factorization are: 

 
𝒅𝜷

𝜷
  𝑫𝒄𝒐𝒍

𝒑𝒆𝒓𝒕 (𝒙/𝜷, 𝒒𝟐/𝝁𝑭
𝟐) 𝝓  𝜷, 𝝁𝑭

𝟐  𝑫𝒄𝒐𝒍 = 

factorization scale 

Factorization scale is arbitrary. Usually they choose  𝝁𝑭~𝟏 𝐆𝐞𝐕,   
i.e. 𝝁  is in the domain of perturbative QCD. Although each 

of  𝑫𝒄𝒐𝒍
𝒑𝒆𝒓𝒕

 and 𝝓  depends  on  𝝁𝑭 their convolutions  are 𝝁𝑭– 
independent. By definition,  𝝓 contains both perturbative and 

non-perturbative contributions 

In contrast,  the inherent mass scale 𝝁𝟏 has a fixed position: it corresponds  

To the maximum location and its value is in the non-perturbative domain.  

The input 𝝋𝒄𝒐𝒍 𝝁𝟏
𝟐, 𝜷  is non-perturbative    



Comparison to the conventional  form of  Collinear Factorization 

 

It is convenient to illustrate evolution of the parton distribution from  

scale  𝝁𝒓
𝟐

   to q2  considering it in the Mellin (momentum) space  : 

𝝋𝒄𝒐𝒍 𝒒
𝟐, 𝝎 =  

𝒒𝟐

  𝝁𝒓
𝟐

𝜸

𝝋𝒄𝒐𝒍 𝝁𝒓
𝟐, 𝝎  as  𝒒𝟐 >   𝝁𝑭

𝟐 >  𝝁𝒓
𝟐  

Mellin variable 
conjugated to 𝜷 

Inherent scale 

=
𝒒𝟐

  𝝁𝑭
𝟐

𝜸/𝒃

 
  𝝁𝑭

𝟐

  𝝁𝒓
𝟐

𝜸/𝒃

𝝋𝒄𝒐𝒍   𝝁𝒓
𝟐, 𝝎  

perturbative Non-perturbative 
Conventional 

integrated 
parton 
density 𝝓  𝜷, 𝝁𝑭

𝟐  

Anomalous 
dimension 

Factorization  
scale 



Non-perturbative inputs for parton distributions in hadrons are introduced 

through the models and fits. Alternatively, there are lattice calculations                                 

 Dmitri Diakonov, V. Petrov, P. Pobylitsa, Maxim V. Polyakov; H. 

Avakian, A.V. Efremov, P. Schweitzer, F. Yuan;Ivan Vitev, 

Leonard Gamberg, Zhongbo Kang, Hongxi Xing; 

Asmita Mukherjee, Sreeraj Nair, Vikash Kumar Ojha; 

I apologize if I have overlooked some name(s) and willingly accept 

corrections  

Models of hadrons: 

Brodsky, Hoyer, Peterson, Sakai 

K. Golec-Biernat, M. Wustoff; H. Jung;  

A.V. Lipatov, G.I. Lykasov, A.A. Grinyuk, N.P. Zotov;  

Jon Pumplin; 

 

Fits: 
G. Altarelli, R. Ball, S. Forte, G. Ridolfi;  E. Leader,  

A.V. Sidorov, D.B. Stamenov; 

J. Blumlen, H. Botcher; M. Hirai 

Most actively used 
in the context  

of factorization  

Recent Lattice Calculations:  

Yan-Quing Ma, Jian-Wei Qui;  Marta Constantinou 



Any model for input T  in the parton-hadron scattering 

amplitudes must satisfy the following constraints: 

 

  

(i) Input T should satisfy the IR and UV stability restrictions 

 

(ii) It should have non-zero imaginary part in the s-channel in order to apply  

      the Optical theorem 

 

(iii) Model should ensure the step-by-step reductions of Basic  

       Factorization to other forms of factorization.  

       In particular, the input in KT – factorization should have  

       a sharp-peaked form . This ensures  reducing to Collinear Factorization 

  



𝑻 = 𝒑 +𝒎𝒉   𝑻𝑼  -  𝒑  +𝒎𝒉  𝜸𝟓𝑺  𝑻𝑺               

ASSUMPTION  

Invariant amplitude for 

unpolarized hadron 

Invariant 
amplitude for 

polarized hadron 

Such a representation  obeys  Conformity:  When the hadron is replaced  

by an elementary fermion,          is replaced by  𝝆   𝑻   

First of all, we fix the spinor part of the input  for quark-hadron amplitudes   

Hadron mass Hadron spin 



For gluon-hadron amplitudes , we choose the inputs in the following form :   

𝑻𝝀𝝆 = 2𝒑𝝀𝒑𝝔  − 𝒌𝝀𝒑𝝔  − 𝒑𝒌 𝒈𝝀𝝆  𝑻𝑼 + i 𝒎𝒉𝝐𝝀𝝔𝝉𝝈𝒌𝝉𝑺𝝈 𝑻𝑺 

Hadron spin 

Invariant  

amplitude  

for polarized  

hadron 
 

Invariant unpolarized 
amplitude 

𝑻𝑼,𝑺 = 𝑻𝑼,𝑺 𝒔𝟏, 𝒌
𝟐,𝒎𝒉

𝟐  

𝒔𝟏= 𝒑 − 𝒌 𝟐 = w𝜶 + 𝒌𝟐+𝒎𝒉
𝟐 

Invariant energy quark virtuality 

All such invariant amplitudes are scalars   

hadron mass 



In order to fix TU,S we suggest  RESONANCE MODEL 

MOTIVATION  FOR THE RESONANCE MODEL  

 

After emitting the active quark from the hadron, the ensemble of remaining  

partons becomes color and therefore it is unstable,  

so it can be described through resonances.  
 
 

In what follows we skip the subscripts U,S  

T = 𝑹′ 𝒌𝟐 𝒁𝒏(𝒔𝟏)           𝒁𝒏 𝒔𝟏  

n  =2,3,…  

T = 𝑹′ 𝒌𝟐
𝟏

(𝒔𝟏−𝒎𝟏
𝟐+𝒊𝜞𝟏)

𝟏

(𝒔𝟏−𝒎𝟐
𝟐+𝒊𝜞𝟐)

 = 

R(𝒌𝟐)
𝟏

𝒔𝟏−𝒎𝟏
𝟐+𝒊𝜞𝟏

−
𝟏

𝒔𝟏−𝒎𝟐
𝟐+𝒊𝜞𝟐

   

𝒔𝟏= 𝒑 − 𝒌 𝟐 = w𝜶 + 𝒌𝟐+𝒎𝒉
𝟐 

It satisfies the requirement of UV stability when                     In the 

simplest case of  n=2 and write it as an interference of resonances:  

=  

𝒓=𝒏

𝒓=𝟐

 
𝟏

(𝒔𝟏−𝒎𝒓
𝟐 + 𝒊𝜞𝒓)

 



𝚽 = 𝑹 𝒌𝟐  

 Breit-Wigner factors 

Applying Optical theorem, we arrive at the non-perturbative input for gluon 

distributions in Basic Factorization:  

In terms of Sudakov variables 

𝟏

𝒘𝜶− 𝝁𝟏
𝟐 + 𝒊𝜞𝟏

−
𝟏

𝒘𝜶 − 𝝁𝟐
𝟐 + 𝒊𝜞𝟐

  𝑻 =  𝑹 𝒌𝟐   

𝜞𝟏

𝒘𝜶− 𝝁𝟏
𝟐 𝟐 + 𝜞𝟏

𝟐
−

𝜞𝟐

𝒘𝜶− 𝝁𝟐
𝟐 𝟐 + 𝜞𝟐

𝟐
 



𝑹 𝒌𝟐  ~ 𝒌𝟐
𝟏+ 𝜼

 IR stability  at small 𝒌𝟐  

𝑹 𝒌𝟐  = 𝑵 𝒌𝟐
𝟏+ 𝜼

 𝒆−|𝒌
𝟐|/𝒂 

In order to fix R at arbitrary   𝒌𝟐 we complement this factor by the exponential 

(Gaussian)  parametrization  which is used by many authors in KT Factorization 

 K. Golec-Biernat, M. Wustoff;  

H. Jung;  

A.V. Lipatov, G.I. Lykasov, A.A. Grinyuk, N.P. Zotov;  
J. Pumplin 

This parametrization is not unique. One can suggest others  

The only rigorous fact about R is  



Transition from Basic Factorization to KT Factorization 
 

It is done according to the prescription I have given above 

For simplicity I consider only one resonance term  

𝝋𝑲𝑻 = 𝑹 𝒌⊥
𝟐  

𝜞𝟏

𝜻 − 𝝁𝟏
𝟐 𝟐 + 𝜞𝟏

𝟐
+

𝜞𝟏

𝜻 + 𝝁𝟏
𝟐 𝟐 + 𝜞𝟏

𝟐
 

𝛇 =  𝐤⊥
𝟐/ 𝛃 > 𝟎 

One of these terms is within the resonance region  
while the other is outside    so only its tail works  

𝝁𝟏
𝟐 −𝝁𝟏

𝟐  

𝝋𝑲𝑻 𝜷, 𝜻  

Integration 
region 

0 𝜻 

resonance 

background 



Specifying  the factor R     

𝑹 𝒌⊥
𝟐  ~ 𝒌⊥

𝟐 𝜼
 

IR stability requires that at small  𝒌⊥
𝟐 

In many papers   R is chosen  

in the exponential/Gaussian form:   

𝑹 𝒌⊥
𝟐  = 𝑹𝟏 𝒌⊥

𝟐 ≡ 𝑵𝒆−𝒌⊥
𝟐/𝒂 

𝑹 𝒌⊥
𝟐 = 𝑹𝟐 𝒌⊥

𝟐 ≡ 𝑵 𝒌⊥
𝟐 𝜼

 𝒆−𝒌⊥
𝟐/𝒂 

Suppressed by  the 

IR stability 

Agrees with the 

 IR stability 

K. Golec-Biernat, M. Wustoff;   
Jon Pumplin 

H. Jung 

A.V. Lipatov, G.I. Lykasov, A.A. Grinyuk, N.P. Zotov 

So, the non-perturbative input in KT Factorization includes the 
resonance term(s)  and background. 



Transition from  KT Factorization to Collinear Factorization 

Integrating 𝝋𝑲𝑻  over 𝒌⊥, we arrive at the non-perturbative input in 
Collinear Factorization.  

𝝋𝒄𝒐𝒍 𝜷, 𝝁𝟏
𝟐 = 𝑵𝜷𝜼𝒆−𝝀𝜷 ≈ 𝑵𝜷𝜼 𝟏 −  𝝀𝜷  

Comparison to Standard DGLAP fit 

normalization singular factor 
two regular 

terms 0,,,, dcbaN

𝛿𝑞, 𝛿𝑔 = 𝑵   𝒙−𝒂   (𝟏 − 𝒙)𝒃   (1+c 𝒙𝒅) 

PROVED: mimics 

resummation of ln(1/x) 

PRESUMEDLY: mimics 

resummation of ln(1-x) 

These two terms must be dropped when the resummations are accounted for  



When they are dropped, the DGLAP fit  is   

𝛿𝑞, 𝛿𝑔 = 𝑵 (1+c 𝒙𝒅) 
while we predict a more general structure 

where                  However, keeping 𝜼 < 𝟎  is vital for  extending DGLAP to the  

small-x region because it provides the fast growth at small x 

𝝋𝒄𝒐𝒍  = 𝑵𝜷𝜼 𝟏 −  𝝀𝜷  

𝜼 > 𝟎  

𝒙−𝒂 Introducing the term           means postulating the Regge asymptotis, 
though asymptotics should not have been used at available energies  

dashed 
line   
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CONCLUSIONS        

We obtained the most general kind of QCD factorization.  

We call it Basic Factorization  

Basic Factorization can be reduced first to KT- and then to Collinear 

Factorizations 

 

Imposing the requirements of IR and UV stability on the convolutions in 

Basic Factorization allowed us to impose general restrictions on the non-

perturbative inputs for parton distributions, without specifying the inputs 

 

Motivated by the simple observation that the ensemble of quarks and 

gluons in a hadron becomes unstable after the hadron emits an active 

parton(s) and therefore can be described through resonances, we 

suggested a model for non-perturbative inputs to the factorization 

convolutions 

We call it Resonance Model. We have constructed it for Single-Parton 

Scattering but a generalization on Multi-Parton Scattering is easy to 

obtain.  

This model can universally describe the inputs to parton-hadron 

amplitudes, parton distributions, DIS structure functions, etc., and can 

universally be used for the polarized and unpolarized hadrons 


