
Your university or
experiment logo here

Squeezing more out of what we have,
trying to do things better and

helping to find new ways to work.

Liverpool site

• We nominally support ~ 20 VOs, with actually traffic from perhaps
half that number, the vast majority being from ATLAS/LHCb.

• In rough figures, we have about:
– 21,445 HS06
– 2018 slots
– 1.5 PB DiskLiverpool uses ARC/Condor and VAC. We have never

used or tested Covfefe, and we have no intention of ever doing
so.

• Our focus has been to provide an efficient service to our
customers by maximising performance and quality at low cost; a
three way trade-off. You can only have two of those.

• Efficiency: (of a system) - achieving maximum productivity with
minimum wasted effort or expense.

14/06/17 The site
2

News that effects efficiency

• In 2016, we were asked to act as a VAC test site.

• In 2017, we were asked to set-up a version 7 cluster, to test UMD
distribution with (in our case) Centos7 workernodes.

• We are currently in the midst of renewing our cooling technology,
which is big disruption that needs a lot of babysitting. This has
delayed other things, like putting the new storage online, IPv6
(which is always just coming in), VAC multicore etc. We'll get to
those things in due course (I always say that.)

• The new storage, ~ 0.3 PB, is undergoing tests using ZFS on
Centos7. Will say more later, once we know.

14/06/17 New things
3

VAC Remarks

• No scalability issues found. Near full slot occupancy. Jobs from ALICE,
ATLAS, LHCb and GridPP.

• Actual usage for ALICE, ATLAS and LHCb at least coarsely relate to the
provided workload ratios.

• VAC may not completely eliminate the need for all middle-ware on the
node; for example, APEL middle-ware to publish accounting records, file
caching software, CVMFS .

• Nonetheless, we found that VAC largely meets its design goals. The total
payload traffic from the experiments who participated was found to be
consistently high, and the VAC system itself is highly reliable and
straight-forward to configure and use. We can recommend VAC to sites
that want to run virtual payloads with minimal ongoing maintenance
effort.

• CHEP 2016:

https://indico.cern.ch/event/505613/contributions/2230750/

•
14/06/17 VAC

4

Version 7 Remarks

• Version 7 cluster is very small at the moment, 24 slots. Not much
traffic, I wouldn't mind seeing some more jobs, and I'd put on
more slots.

• Haven't tried mcore with it yet. Would like to try.
• Decent documentation is available on the install we used.

– https://www.gridpp.ac.uk/wiki/Centos7_Adoption
• This documentation also :

– a) provides tools to allow us to finally abandon Yaim
altogether.

– b) has a simple introduction to Puppet3 and Hiera (which is
about all I know.)

• More on that, if time allows.

14/06/17 Centos7
5

Cooling Remarks

• Complete renewal (more efficient, to save money.)

• Divide machine room into two halves with barrier.

• Maintain ops in one half, using ~ half the old cooling, on flat out.

• Tear everything out of the other half, install new cooling there.

• Move _everything_ into the new “half”. Do up the other half if we need
the space.

• Obviously, this is hugely disruptive, since we are operating on half
power cooling, and the old cooling is flaky anyway.

• Maintaining about 75% to 90% power of cluster. Some flakiness is showing
through, that needs careful control to avoid meltdown.

• Nodes scripted to shut themselves off (based on rate of change of CPU
temp, and max value) as a last ditch measure to prevent the smoke
coming out.

14/06/17 Cooling
6

VAC Memory

• We did some tuning on the VAC memory.

• Most efficient number of jobs is not necessarily equal to the number of
hyper-threads a system can support.

• It is between core and cores * 2 (hyper-threads.) On VAC, this coarsely
tallies with the number of VMs.

• VAC payloads are ostensibly variable in size; they actually appear to be
consistent.

• On our VAC nodes, memory is the constraint - there is not enough
memory to pick running jobs = hyper-threads.

• We have to under-subscribe the cores; cpu not fully utilised.

• So we want to bring VAC to the point where it is most efficient, i.e. as
near as possible to the ideal number.

• We over-subscribe VAC in terms of memory, then back off the usage until
we see high efficiency.

14/06/17 VAC memory tuning
7

VAC Memory

• On E5-2630 v2, sweet spot is 23 “jobs” (24 max
hyperthreads). With VMs at the notional sweet spot wrt cpu,
we see this (top -b -n 1 | grep qemu)

•
 7521 qemu 20 0 4708m 2.6g 4468 S 100.5 5.5 232:55.14 qemu-kvm
15124 qemu 20 0 6610m 2.6g 2884 S 100.5 5.6 381:55.65 qemu-kvm

• And so on for 19 jobs or so, then rapid tail off due to use of
swap (perhaps?) Can't fit 23 jobs/VMs.

16603 qemu 20 0 6562m 2.4g 2892 S 96.7 5.0 647:28.94 qemu-kvm
20147 qemu 20 0 6749m 2.4g 2864 S 94.8 5.0 868:24.76 qemu-kvm
 8161 qemu 20 0 4351m 1.7g 5524 S 0.0 3.6 3:36.50 qemu-kvm
22987 qemu 20 0 4621m 1.7g 5524 S 0.0 3.7 6:54.91 qemu-kvm

14/06/17 VAC memory tuning
8

VAC Memory

• I believe the slow payloads are the last to start, and are
thus unable to build up their working set and are forced into
swap. To check when they started (diff machine) ...

for p in `top -b -n 1 | grep qemu | sed -e "s/qemu.*//"`; do ps -eo pid,cmd,etime | grep $p | grep -v -e
grep -e vhost; done | grep -e 24690 -e 13006 -e 15344
13006 /usr/libexec/qemu-kvm -name 06:56:11
15344 /usr/libexec/qemu-kvm -name 54:36
24690 /usr/libexec/qemu-kvm -name 01:32:26

• Yep. Two of the three slow ones started in the last hour or
two; while the majority of the fast VMs started many hours
before. So, reduce the VM count incrementally until things
are right, i.e. opposite of tuning a guitar.

14/06/17 VAC memory tuning
9

VAC Memory

• With 22, all is well (top -b -n 1 | grep qemu)
 1043 qemu 20 0 7461m 1.9g 848 S 100.5 4.1 32:49.05 qemu-kvm
 2161 qemu 20 0 6907m 2.6g 868 S 100.5 5.4 28:46.85 qemu-kvm
3452 qemu 20 0 6574m 2.5g 864 S 100.5 5.4 34:24.79 qemu-kvm
 4492 qemu 20 0 7316m 1.9g 888 S 100.5 4.0 32:46.86 qemu-kvm

• Etc...
25638 qemu 20 0 6823m 2.2g 852 S 98.6 4.6 590:04.97 qemu-kvm
26392 qemu 20 0 7485m 2.6g 864 S 98.6 5.5 38:46.96 qemu-kvm
28161 qemu 20 0 6033m 1.0g 852 S 98.6 2.2 43:09.12 qemu-kvm
30022 qemu 20 0 6674m 1.5g 976 S 98.6 3.2 39:52.91 qemu-kvm

• Now they all get plenty of cpu. They may have huge VM, but
it's swapped out or shared etc. and never used, hence the
working set fits in RAM. No slowness. I can live with that.

14/06/17 VAC Memory tuning
10

Multicore Draining Eff.

• Our approach to multicore on ARC/Condor_Cluster was
original pinched from RAL, and it is extensively documented
on the GridPP wiki.

• I've recently optimised this strategy a bit, having learned
that other sites were getting better results.

• I'll use the next few slides to describe the method, and the
new changes and I'll show some before and after cases.

• Thanks to also RALPP for making the work more general and
for the ranking expression (TBD) that further improves the
efficiency of the approach.

•

14/06/17 Mcore efficiency measures
11

https://www.gridpp.ac.uk/wiki/Example_Build_of_an_ARC/Condor_Cluster#Defragmentation_for_multicore_jobs

Multicore Draining Eff.

• Small print (for the record):
– The provision of multicore slots depends on the Condor Partitionable Slots feature.

– “Unislots” can “coalesce” to form wider slots, to run multicore jobs.

– They coalesce “on their own”, but only once jobs are drained off.

– Since jobs don't necessarily all finish at once, single core jobs have to be kept off the
slots until they have coalesced into a wide slot and taken a wide job.

– Hence, at least in the first place, some draining might be needed.

– This leads to inefficiency (unused cores) while the wide slot is being prepared.

– Another problem is what happens when a wide job ends? If a single core gets on, no
new wide core can start...

• So that defines the problem. a) Find a way to hold single core jobs
off nodes to get some wide slots in the first place, then b) keep
them after a wide job ends by making sure you run another wide
job in the freed up wide slot.

14/06/17 Mcore efficiency measures
12

Multicore Draining Eff.

• In reverse order, we solve problem (b) (keeping a wide slot) at
Liverpool in 2 ways.
– First, once a wide slot in drained, we try to delay putting it

back in use until it has had chance to run a wide job.
– Then we assign wide jobs to a Condor accouting subgroup that

has a priory factor set to a low number (low number = high
priory...)

• And we solve problem (a) (making a wide slot in the first place)
using a tool we developed called Fallow.

• We _think_ Fallow has a better algorithm than the
defragmentation tool supplied with HTCondor (but external
scripting is not really a HTCondor way of doing things.)

• So perhaps we'll go back to the DEFRAG daemon sometime and try
it again.

14/06/17 Mcore efficiency measures
13

Multicore Draining Eff.

14/06/17 The Long View
14

Multicore Draining Eff.

14/06/17 Before cooling went to pot
15

Multicore Draining Eff.

14/06/17 After cooling went to pot
16

Multicore Draining Eff.

14/06/17 New version of Fallow. Zero
wastage. 17

Multicore Draining Eff.

14/06/17 Flat line; it's a good thing.
18

Multicore Draining Eff.

• To measure the wastage before the new control function, I
take a period of calm operations with no incidents, before
the cooling went flaky, i.e. from 15th March for 10 days
straight, and use a tool to integrate the gap (delta between
slots available and slots occupied). That gives:

./wastage.pl -f log.out -st "20170316 00:00:00" -d 864000
CPUs potentially available -- 1274
Average running cpus -- 1233

Wastage -- 40, or around 3.14 %

14/06/17 What are the figures?
19

Multicore Draining Eff.

• And I measure the calm period in early June as a comparison
(see the final plot):

./wastage.pl -f log.out -st "20170602 00:00:00" -d 864000
CPUs potentially available -- 914
Average running cpus -- 910

Wastage -- 3, or around 0.36 %

• So it looks ~ ten times better now, using the Example
ARC/Condor build with version 1.6.1 of Fallow:

https://www.gridpp.ac.uk/wiki/Example_Build_of_an_ARC/Condor_Cluster

http://hep.ph.liv.ac.uk/~sjones/fallow-1.6-1.x86_64.rpm

14/06/17 What are the figures?
20

https://www.gridpp.ac.uk/wiki/Example_Build_of_an_ARC/Condor_Cluster
http://hep.ph.liv.ac.uk/~sjones/fallow-1.6-1.x86_64.rpm

Multicore Draining Eff.

• The ratio I use is normally 66% mcore. I could probably go higher.
I'm testing 76% to check the effect. See later...

• It may be possible to expand the scheme for more than one VO, if
the mcore slot size is the same.

• As long as a good supply of score and mcore jobs come along, then
one can get steady and highly efficient results using the standard
techniques described.

• But it takes some time to recover from operational incidents,
transient job droughts and so on.

• Another approach (RAL?) is to pre-empt jobs (kill them off). There
is virtually no lag there, but it imposes a constraint on the type of
job (they must not mind being killed!)

14/06/17 Discussion
21

Multicore Draining Eff.

• What caused the improvement?
• First, I got some patches from Chris and Ian at RALPP. One of them

allows Fallow to schedule more than one mcore on a node, which
is handy for the ratios ATLAS is asking for now. The other patch
ranks candidate nodes for draining based on an estimate of the
amount of likely “lost-work” (formerly, the choice was a matter of
luck.) I think these went into 1.5.1.

• And another good improvement came when I changed the control
function quite a bit. The main change was to make Fallow check
more circumstances when _less_ draining is needed, whatever the
reason. If that is the case, Fallow chooses the best nodes to put
back on (those that are farthest from being drained).

•

14/06/17 Why did it get better?
22

Multicore Draining Eff.

A slot is a single/hyperthread/logical cpu.
A node is said to be "draining" when it only can run score jobs.
A node is said to be "drained" when it has 8+ slots slack.

• Get the whole set of nodes, and their individual states/properties.

• For any node that is draining and which has 8 slots slack, stop draining after one negotiation
cycle.

• If nothing queued, quit draining all nodes (score draining on all nodes anyway.)

• If only mcore queued, quit draining all nodes (score draining on all nodes anyway.)

• If only score queued, quit draining all nodes (there's no point draining.)

• If you get this far, both mcore and score jobs are in the queue.

14/06/17 Control function part 1
23

Multicore Draining Eff.

Calculate how many more nodes should be draining

• mcoreDesired = setPoint / 8.0

• delta = mcoreDesired - mcoreRunning

• delta = delta - beingDrained

• if delta +ve, we need more draining ...

Find a set (max size: delta) as follows.

Go over the nodes in "nearest to drained" order and select those

which would have at least 8 slots of slack once all its score jobs

have ended (rejecting nodes that are already being drained, or

which already have 8+ slots of slack.)

Start to drain those nodes.

14/06/17 Control function part 2
24

Multicore Draining Eff.

• But if delta -ve, we need less draining ...

Find a set (max size: abs delta) as follows.

Go over the nodes in "farthest from drained" order and select those

that are draining.

Stop draining those nodes.

14/06/17 Control function part 3
25

Multicore Draining Eff.

• And what does “nearest to drained” and “farthest from drained”
mean? This is the ranking function supplied by Chris Brew and Ian
Loader. When you are selecting a node to drain, you want to chose
one that :

a) has some free slots already, so that it drains sooner and
b) is a node with many slots in the system, since, probabilistically, jobs on such
a node end more frequently than they would on a node with few slots.

• Hence the patch “ranks” the list of nodes using those criteria,
combined into one value field. Fallow hence selects nodes that are
nearest or farthest from being drained by sorting the list of candidate
nodes on that rank field, minimising loss of work.

• So when you want to start to drain nodes, you sort in one direction
and chose the ones with the least draining to do, and when you
cancel a drain, you sort the other way and chose ones that have the
most draining to do (that's the best sacrifice).

14/06/17 Control function part 3
26

Multicore Draining Eff.

14/06/17 Revisit aggressive target
27

Multicore Draining Eff.

• Wastage of ~ 2 %. Much worse (but not too bad.)
• So the highest I can go is actually ~ 680 mcore slots used jobs in

915 slot cluster, or ~ 75%.
• If I try to get a better ratio than that, I get more draining, but the

ratio does not improve.
• Why? One theory is that we have a lot of nodes with 10 slots. They

can only take 1 mcore no matter how much draining we do!
• I’ll look at this and see if we can rearrange the slots per node

figures. It might be worth getting less hepspec06 overall, as long
as we can get more mcore… worth looking at maybe (in infinite
free time).

14/06/17 Revisit, wastage
28

Publishing

• A while back I wrote a wiki page on how to get the
publishing right.

https://www.gridpp.ac.uk/wiki/Publishing_tutorial

• And I wrote up how use the outputs of this procedure in
ARC/Condor arc.conf file.
– https://www.gridpp.ac.uk/wiki/Example_Build_of_an_ARC/Condor_

Cluster#Notes_on_Accounting.2C_Scaling_and_Publishing

• The standard “gLite-style” BDII publishing is used by the
APEL accounting to get a site standard benchmark value.
And it's has information that can be combined to find a site's
installed capacity, for VOs who are interested in that.

14/06/17 Publishing
29

Publishing

• But VAC doesn't have a BDII.

• This doesn't matter to the APEL system, because VAC accounting records
contain the HS06 benchmark used on the factory system. They are self
contained.

• But it does matter to the installed capacity. Basically, VAC is not counted. So
there is a choice to make.
– a) Live with it. VOs can't determine the installed capacity at a site.

That's the VAC ethos; systems are opportunistic, even if they are not.
Does anyone really care? What about VAC only sites?

– b) Configure ldif records (or a special BDII) to hold the VAC figures and
transmit them. A fair bit of work, not a standard service node, and it
goes against the “VAC ethos”. Will the BDII even matter soon?

– c) Clump the installed capacity values into the standard BDII, and munge
the values to make them “valid”. We do this.

14/06/17 Publishing discussion
30

Publishing

14/06/17 Publishing discussion
31

• Munging is made easier with an app; Site Layout DB

• The AGGREGATE cluster set is used to do the munging.

Publishing

14/06/17 Publishing discussion
32

• Add the clusters to the aggregate cluster set, one by one (a “cluster set” is
analogous to a Site.)

Publishing

14/06/17 Publishing discussion
33

• Like this ...

Publishing

14/06/17 Publishing discussion
34

• Then use the Reports menu...

Publishing

14/06/17 Publishing discussion
35

• And select the report for the AGGREGATE cluster set

Publishing

14/06/17 Publishing discussion
36

• And I get the values I need to put in the arc.conf.

Publishing

14/06/17 Publishing discussion
37

• Obviously I have to reset it all after.

• Could easily be done any way you like, of course. Spreadsheet, maybe?

• But the SLDB has lots of other nice to have thingies.

• I tend to use it like this:

– Plan design changes for the site.

– Update the SLDB to model the changes and see what's what,

– Then actually update the racks, nodes, operating systems, networks, middleware,
install new nodes, memory, whatever. Move the nodes around to create new clusters,
dismantle old ones...

– Then update the BDII with the values already in the SLDB.

• So it's a life cycle tool. I don't know now how I coped without it. It's either more accurate or
easier, or maybe both at once.

• Discussion on how sites manage, and how they use their SLDBs.

• I.e. what are the other requirements for automation etc.

• Could I run an entire site scripted entirely from the SLDB, so I no longer need to use vi?
What else is out there?

Your university or
experiment logo here

How to “efficiently” build Centos7
HTCondor workernodes, without Yaim,

for UMD release testing.

Version 7 Remarks

• In 2017, we were asked to set-up a version 7 cluster, to test UMD
distribution with (in our case) Centos7 workernodes.

• We have had jobs arriving from the atlas, gridpp, dteam, t2k,
lhcb, ilc and ops VOs.

• V 7 cluster is very small. Not much traffic. LHCB long lasting jobs.
ATLAS not picking up pilots. Haven't tried mcore.

• Decent documentation is available on the install we used.
– https://www.gridpp.ac.uk/wiki/Centos7_Adoption

• This documentation also :
– a) provides tools to allow us to finally abandon Yaim

altogether.
– b) has a simple introduction to Puppet3 and Hiera (which is

about all I know.)

14/06/17 Centos7
39

Version 7

• How we build our Centos7 HTCondor workernodes, without Yaim (I
only give the salient points.)
https://www.gridpp.ac.uk/wiki/Centos7_Adoption

• A repository of UMD middle-ware code has been ported to Centos7
and is available for testing and early adoption (Andrea Manzi)
– Note: wn-emi will now be called wn (which might be the

shortest package name ever.)
• The headnode for this mini-cluster is a normal HTCondor

headnode running on SL6. The build for that is documented in the
GridPP wiki:
https://www.gridpp.ac.uk/wiki/Example_Build_of_an_ARC/Condor_Cluster

• Basis of build is a plain Centos7 worker-node build to local site
standards using “CentOS Linux release 7.3.1611 (Core)”, and the
xfs filesystem. Build is completed by Puppet and Hiera.

14/06/17 Centos7
40

https://www.gridpp.ac.uk/wiki/Centos7_Adoption
https://www.gridpp.ac.uk/wiki/Example_Build_of_an_ARC/Condor_Cluster

Puppet3 and Hiera

• High-level build system
• Puppet gives declarative means to define the end-state
• Hiera gives a way to define parameters used during the puppet

build; useful for making modules portable.
• Puppet modules contain parameters that will be resolved by

Hiera when the node is built. Hiera looks them up in a user-
defined hierarchical database.

• Hence general, default settings can be generally defined for “all”
nodes by default, while more specific settings can be defined
where a particular node in the set needs something special.

• More general more specific implies a Hierarchy…→
• Our v7 workernode are defined in Hiera in a “nodetype” file

(much code omitted, related to security, ganglia etc.)

14/06/17 Centos7
41

Version 7

14/06/17 Centos7
42

cat environments/production/hiera/nodetype/condor-c7-L5420.yaml

classes:
 - grid_users
 - condor_c7
 - cvmfs
 - grid_hosts

condor_c7::params::ral_node_label: "L5420"
condor_c7::params::ral_scaling: "0.896"
condor_c7::params::num_slots: "1"
condor_c7::params::slot_type_1: "cpus=8,mem=auto,disk=auto"
condor_c7::params::num_slots_type_1: "1"
condor_c7::params::slot_type_1_partitionable: "TRUE"
condor_c7::params::processors: "8"
condor_c7::params::numberOfCpus: "2"
condor_c7::params::headnode: "igrid5.ph.liv.ac.uk"

cvmfs::cvmfs_quota_limit: '20000'
cvmfs::cvmfs_http_proxy: 'http://hepsquid1.ph.liv.ac.uk:3128|
http://hepsquid2.ph.liv.ac.uk:3128'
cvmfs::cvmfs_cache_base: '/var/lib/cvmfs'

Version 7

14/06/17 Centos7
43

yum_repositories:
 local:
 descr: "local RPMs"
 baseurl: "http://map2.ph.liv.ac.uk/yum/local/rhel/7/x86_64"
 enabled: "1"
 protect: "1"
 gpgcheck: "0"
 priority: "1"
 epel:
 descr: "Extra Packages for Enterprise Linux 7 - $basearch"
 baseurl: "http://map2.ph.liv.ac.uk/yum/ONLINE/pub/epel/7/$basearch"
 enabled: "1"
 gpgkey: "http://dl.fedoraproject.org/pub/epel/RPM-GPG-KEY-EPEL-7"
 gpgcheck: "1"
 priority: "99"

Version 7

14/06/17 Centos7
44

cat environments/production/hiera/node/r26-n15.ph.liv.ac.uk.yaml

classes:
 -
nodetype: "condor-c7-L5420"
condor_c7::params::someparm : "somevalue"

An actual node, say r26-n15.ph.liv.ac.uk, is associated with
this particular nodetype via another Hiera yaml file, thus
defining a concrete node.

Version 7

• The trouble is that Hiera doesn’t actually have a “nodetype” level
in its hierarchy. We need it to avoid lots of identical node
definitions containing duplication.

• So we insert one as follows:

14/06/17 Centos7
45

cat /etc/puppet/hiera.yaml

:backends:
 - yaml
:hierarchy:
 - node/%{::clientcert}
 - nodetype/%{::nodetype}
 - os/%{::operatingsystem}/%{::operatingsystemmajrelease}
 - os/%{::operatingsystem}
 - site-info
 - common

Etc. etc.

Version 7

• And we add a line to a Hiera config file to make Hiera itself
lookup the value of “nodetype”.

• vi /etc/puppet/environments/production/manifests/site.pp

• And explicitly add this line to that file to read and set the
nodetype variable.

$nodetype = hiera('nodetype')

14/06/17 Centos7
46

Version 7

• The important modules are described in this section:

https://www.gridpp.ac.uk/wiki/Centos7_Adoption#Puppet_module_layout

• The main Puppet modules used in the procedure are provided in a
tar ball.

http://hep.ph.liv.ac.uk/~sjones/Centos7/modules.tar

• They consist of:
– grid_users: replaces Yaim (config_users) and runs 100 times faster.
– condor_c7: install HTCondor on the worker node and makes it ready to

use.

• Details are given in the document referenced.

14/06/17 Centos7
47

https://www.gridpp.ac.uk/wiki/Centos7_Adoption#Puppet_module_layout
http://hep.ph.liv.ac.uk/~sjones/Centos7/modules.tar

Discussion points

• Is there such a thing as a normal T2 now?

• Publishing calculations efficiency/accuracy. Does the BDII matter.
Do we care about installed capacity?

• VAC efficiency/tuning

• Mcore efficiency/tuning

• Puppet/Hiera admin efficiency/tuning

14/06/17 Discussion points
48

	Instant UI
	Introduction
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

