
ZFS vs hardware RAID
Daniel Traynor, QMUL, HEPsysman 2017

d.traynor@qmul.ac.uk

mailto:d.traynor@qmul.ac.uk

Aim

• Deploy ZFS on to storage hardware and evaluate
performance. Compare to hardware raid with the same
hardware. Use a modern system.

• For cheeper Lustre HA setup need to avoid using
dedicated ZIL (ZFS intent log) for writes and L2ARC cache
for reads.

Tests setup
• Use “spare” HPE APPLO 4200.

• RAID card can be run as a HBA card.

• Compare 12 disk raid 6 with 12 disk raidZ2.

• 8TB disks, 128 GB RAM (2 or 16 GB used for performance
tests), 2* E5-2609 V3 CPU (12 cores @ 1.9GHz). Raid card
has 2GB cache in Raid mode but not HBA mode.

• SL6.7 with ZFS version 0.6.5.9.

Short tests

• Run “short” iozone test (streaming performance) with
different thread count but same total data throughput
(80GB) limit RAM to 2GB.

• Run “short” tests but with 16GB RAM.

• e.g. iozone -t 40 -r 1024k -s 2g -i0 -i1

Results (2G RAM)
Write

M
B/

s

0
175
350
525
700

6 12 24 40

Raid 6 ZFS RaidZ2
Rewrite

M
B/

s

0
175
350
525
700

6 12 24 40

Raid 6 ZFS RaidZ2

Read

M
B/

s

0
300
600
900

1200

6 12 24 40

Raid 6 ZFS RaidZ2
Reread

M
B/

s

0
300
600
900

1200

6 12 24 40

Raid 6 ZFS RaidZ2

Results (16GB RAM)
M

B/
s

0
350
700

1050
1400

Write/Number of threads

6 12 24 40

Raid 6 + 2GB
ZFS RaidZ2 + 2GB
ZFS RaidZ2 + 16GB

M
B/

s

0
350
700

1050
1400

Rewrite/Number of threads

6 12 24 40

Raid 6
ZFS RaidZ2 + 2GB
ZFS RaidZ2 + 16GB

M
B/

s

0
350
700

1050
1400

Read/Number of threads

6 12 24 40

Raid 6 + 2GB
ZFS RaidZ2 + 2GB
ZFS RaidZ2 + 16GB

M
B/

s

0
350
700

1050
1400

Reread/Number of treads

6 12 24 40

Raid 6 + 2GB
ZFS RaidZ2 + 2GB
ZFS RaidZ2 + 16GB

Optimisation tests
• IOzone long test with 16GB RAM + different optimisations

• RAID 6 use stranded EXT4 set taken from Lustre.

• For ZFS

• Subset of Lustre tunes

• ZFS record size 64->128 k

• ZFS IO operations per device 10 -> 12

• iozone -e -+u -t 12 -r 1024k -s 6.7g -i0 -i1 -i 2 -i 3 -i 5 -i 8

Optimisations

options zfs zfs_vdev_async_read_max_active=12
options zfs zfs_vdev_async_read_min_active=12
options zfs zfs_vdev_async_write_max_active=12
options zfs zfs_vdev_async_write_min_active=12
options zfs zfs_vdev_sync_read_max_active=12
options zfs zfs_vdev_sync_read_min_active=12
options zfs zfs_vdev_sync_write_max_active=12
options zfs zfs_vdev_sync_write_min_active=12

options zfs zfs_vdev_cache_size=1310720
options zfs zfs_vdev_cache_max=131072
options zfs zfs_vdev_cache_bshift=17
options zfs zfs_read_chunk_size=1310720

echo madvise > /sys/kernel/mm/redhat_transparent_hugepage/enabled
echo madvise > /sys/kernel/mm/redhat_transparent_hugepage/defray
echo 1 > /proc/sys/vm/dirty_background_ratio
echo 75 > /proc/sys/vm/dirty_ratio
echo 262144 > /proc/sys/vm/min_free_kbytes
echo 50 > /proc/sys/vm/vfs_cache_pressure

Ext4/Linux dev

ZFS 128k
record size

Ext4/
Linux cache

echo deadline > /sys/block/sdb/queue/scheduler
echo 4096 > /sys/block/sdb/queue/nr_requests
echo 4096 > /sys/block/sdb/queue/read_ahead_kb
echo performance | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor >/dev/null

ZFS
pending IO
per device

Optimisation results EXT4
M

B/
s

0

350

700

1050

1400

Hardware Raid performance

write

Rew
rite Rea

d

Rere
ad

Rev
ers

e r
ea

d

Strid
e r

ea
d

Ran
dom

 re
ad

Mixe
d

Ran
dom

 W
rite

s

Raid6 + 2GB Raid6 + 16 GB Raid6 + 16GB+ Opt

As expected significant improvement in Read and sequential
write performance with Linux Optimisations

Optimisation results ZFS
M

B/
s

0

350

700

1050

1400

ZFS RaidZ2 Performance

write

Rew
rite Rea

d

Rere
ad

Rev
ers

e r
ea

d

Strid
e r

ea
d

Ran
dom

 re
ad

Mixe
d

Ran
dom

 W
rite

s

ZFS RaidZ2 + 2GB ZFS RaidZ2 + 16GB
ZFS RaidZ2 + 16Gb + OPT

Significant improvement with “small” amount of RAM.
Little improvement with ZFS optimisations

ZFS vs RAID
M

B/
s

0

350

700

1050

1400

ZFS vs Raid Performance

write

Rew
rite Rea

d

Rere
ad

Rev
ers

e r
ea

d

Strid
e r

ea
d

Ran
dom

 re
ad

Mixe
d

Ran
dom

 W
rite

s

Raid 6 + 16 Gb + OPT ZFS RaidZ2 + 16GB

ZFS and RAID performance equal for sequential workloads
RAID better for random reads, ZFS better for random writes

Conclusions

• We were able to show that performance of ZFS (without
dedicated ZIL or L2ARC cache) was able to match that of
EXT4 + hardware RAID, when optimisation were applied to
EXT4 and ZFS had a reasonable amount of RAM available
(>>2GB). However these are simmilar to production
conditions.

• Feel confident to use ZFS for our next storage purchase
without dedicated caches. This will allow cost effective HA
setup for Lustre.

Expected ZFS+Lustre setup

Dell Storage for HPC with Intel Enterprise Edition 2.3 for Lustre sofware

The object storage subsystem is comprised of one or more Object Storage Targets (OST) and one or
more Object Storage Servers (OSS). The OSTs provides storage for file object data, while each OSS
manages one or more OSTs. Typically, there are several active OSSs at any time. Lustre is able to
deliver increased throughput by increasing the number of active OSSs (and associated OSTs). Each
additional OSS increases the existing networking throughput, while each additional OST increases the
storage capacity. Figure 1 shows the relationship of the MDS, MDT, MGS, OSS and OST components of a
typical Lustre configuration. Clients in the figure are the HPC cluster’s compute nodes.

Figure 1: Lustre based storage solution components

A parallel file system, such as Lustre, delivers performance and scalability by distributing data
(“striping” data) across multiple Object Storage Targets (OSTs), allowing multiple compute nodes to
efficiently access the data simultaneously. A key design consideration of Lustre is the separation of
metadata access from IO data access in order to improve the overall system performance.

The Lustre client software is installed on the compute nodes to allow access to data stored on the
Lustre file system. To the clients, the file system appears as a single namespace that can be mounted
for access. This single mount point provides a simple starting point for application data access, and
allows access via native client operating system tools for easier administration.

Lustre includes a sophisticated and enhanced storage network protocol, Lustre Network, referred to as
LNet. LNet is capable of leveraging certain types of network features. For example, when the Dell
Storage for HPC with Intel EE for Lustre utilizes InfiniBand® as the network to connect the clients, MDSs
and OSSs, LNet enables Lustre to take advantage of the RDMA capabilities of the InfiniBand fabric to
provide faster I/O transport and lower latency compared to typical networking protocols.

To summarize, the elements of the Lustre file system are as follows:

Don’t want ZIL on OSS due to failover requirements

