Higgs self couplings in single H and HH production

Fabio Maltoni
Centre for Cosmology, Particle Physics and Phenomenology (CP3)
Université catholique de Louvain

Work in collaboration with: G.Degrassi,PP.Giardino,D.Pagani

The Higgs potential

A low-energy parametrisation of the Higgs potential

$$
V(H)=\frac{m_{H}^{2}}{2} H^{2}+\lambda_{3} v H^{3}+\lambda_{4} H^{4}+\ldots
$$

In the Standard Model:

$$
V^{\mathrm{SM}}(\Phi)=-\mu^{2}\left(\Phi^{\dagger} \Phi\right)+\lambda\left(\Phi^{\dagger} \Phi\right)^{2} \quad \Rightarrow\left\{\begin{array} { l }
{ v ^ { 2 } = \mu ^ { 2 } / \lambda } \\
{ m _ { H } ^ { 2 } = 2 \lambda v ^ { 2 } }
\end{array} \left\{\begin{array}{l}
\lambda_{3}^{\mathrm{SM}}=\lambda \\
\lambda_{4}^{\mathrm{SM}}=\lambda / 4
\end{array}\right.\right.
$$

i.e., fixing v and m_{H}, uniquely determines both λ_{3} and λ_{4}.

That means that by measuring λ_{3} and λ_{4} one can test the SM, yet to interpret deviations, one needs to "deform it", i.e. needs to consider a well-defined BSM extension. Such extensions will necessarily depend on TH assumptions.

The Higgs potential

To go Beyond the SM, one can parametrise a generic potential by expanding it in series:

$$
V^{\mathrm{BSM}}(\Phi)=-\mu^{2}\left(\Phi^{\dagger} \Phi\right)+\lambda\left(\Phi^{\dagger} \Phi\right)^{2}+\sum_{n} \frac{c_{2 n}}{\Lambda^{2 n-4}}\left(\Phi^{\dagger} \Phi-\frac{v^{2}}{2}\right)^{n}
$$

so that the basic relations remain the same as in the SM:

$$
\left\{\begin{array}{l}
v^{2}=\mu^{2} / \lambda \\
m_{H}^{2}=2 \lambda v^{2}
\end{array}\right.
$$

while the λ_{3} and λ_{4} are modified with respect to the SM values:

$$
\left\{\begin{array}{l}
\lambda_{3}=\kappa_{\lambda} \lambda_{3}^{\mathrm{SM}} \\
\lambda_{4}=\kappa_{\lambda_{4}} \lambda_{4}^{\mathrm{SM}}
\end{array}\right.
$$

So for example: adding c_{6} only $\left\{\begin{array}{l}\kappa_{\lambda}=1+\frac{c_{6} v^{2}}{\lambda \Lambda^{2}} \\ \kappa_{\lambda_{4}}=1+\frac{6 c_{6} v^{2}}{\lambda \Lambda^{2}}\end{array}\right.$ i.e., in this case λ_{3} and λ_{4} are related.

HH at the LHC

Many channels, but small cross sections.
Current limits are on $\sigma_{S M}(\mathrm{gg} \rightarrow \mathrm{HH})$ channel in various H decay channels:

$$
\begin{array}{lll}
\text { CMS : } & \sigma / \sigma_{S M}<74 & (\text { bby }) \\
\text { ATLAS : } & \sigma / \sigma_{S M}<30 & (\text { bbbb })
\end{array}
$$

Remarks:

1. Interpretations of these bounds in terms of BSM always need additional assumptions on how the SM has been deformed.
2. The current most common assumption is just a change of λ_{3} which leads to a change in σ as well as of distributions:
Note: due to shape changes, it is not straightforward to infer a bound on λ_{3} from $\sigma(\mathrm{HH})$, even

$$
\sigma=\sigma_{\mathrm{SM}}\left[1+\left(\kappa_{\lambda}-1\right) A_{1}+\left(\kappa_{\lambda}^{2}-1\right) A_{2}\right]
$$ when $\sigma_{\mathrm{BSM}}=\sigma\left(\lambda_{3}\right)$ only is assumed.

HH sensitivity in the SMEFT

 are comparable. The range of c_{6} is commensurate to that of $\mathrm{k}_{\lambda 3}$.

Main observations:

1. An accurate measurement of the Higgs selfcouplings will depend on our ability to bound several (top-related) SMEFT operators: $\mathrm{O}_{\mathrm{tG}}, \mathrm{O}_{\varphi \mathrm{G}}, \mathrm{O}_{\mathrm{t} \varphi}$.
2. Given the current constraints on $\sigma(\mathrm{HH})$, the Higgs self-coupling can be constrained "ignoring" the other EFT couplings.
3. The current "EFT-relevant" range corresponds to values around $-2 \approx \mathrm{k}_{\lambda} \approx 4$.
4. A theoretically meaningfully way of interpreting models with quite large values for λ_{i} is assumed in closing down at "EFT-consistent" and "EFTrelevant" regions.

Question

Is there any other way of getting independent (and useful) information on the Higgs self-interactions at the LHC?

The idea

1) Exploit the dependence of single-Higgs (total and differential) cross sections and decay rates on the self couplings at NLO (EW) level:

2) Combine all the information (rates and distributions) coming from the relevant single Higgs channels in a global way.

Available calculations

Ref
Authors
Processes
Comments

1312.3322	M.McCullough	$\mathrm{e}+\mathrm{e} \rightarrow$ ZH
1607.03773	M.Gorbahn, U.Haisch	$\begin{aligned} & \mathrm{gg} \rightarrow \mathrm{H} \\ & \mathrm{H} \rightarrow \mathrm{~W} \end{aligned}$
1607.04251	G.Degrassi, P.P. Giardino, F.M., D.Pagani	$\mathrm{gg} \rightarrow \mathrm{H}, \mathrm{WH}, \mathrm{ZH}, \mathrm{VBF}, \mathrm{ttH}$ $\mathrm{H} \rightarrow \mathrm{w}, \mathrm{WW}^{*} / \mathrm{ZZ}^{*} \rightarrow 4 \mathrm{ll}, \mathrm{gg}$
1610.05771	W.Bizon, M.Gorbahn, U.Haisch, G.Zanderighi	WH,ZH,VBF

applications at future colliders
approx. two-loop
results mh $\rightarrow 0$
total and diff.
total and diff. + effects of QCD corrections

Master formula

$$
\delta \sigma \equiv \frac{\sigma_{\mathrm{NLO}}-\sigma_{\mathrm{NLO}}^{\mathrm{SM}}}{\sigma_{\mathrm{LO}}}=\left(\kappa_{\lambda}-1\right) C_{1}+\left(\kappa_{\lambda}^{2}-1\right) C_{2}
$$

Process and kinetic dependent
$C_{1}^{\sigma}=\frac{\sum_{i, j} \int d x_{1} d x_{2} f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right) 2 \Re\left(\mathcal{M}_{i j}^{0 *} \mathcal{M}_{\lambda_{3}^{S M}, i j}^{1}\right) d \Phi}{\sum_{i, j} \int d x_{1} d x_{2} f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right)\left|\mathcal{M}_{i j}^{0}\right|^{2} d \Phi}$

Similar (but simpler) formula for C_{1} of decay widths.
Note that branching ratios do not depend on C_{2}

Technical intermezzo

* We remind that in general in renormalisable gauge theories is not possible to meaningfully isolate effects of specific couplings, at the tree-level or at higher orders. Even more troublesome can be to arbitrary "deform" the SM by arbitrary changes of couplings and compute loops.
* A consistent and safe framework to perform higher-order computations is that of an EFT, where several NLO (QCD and EW) results are now available.
* In the case of the processes (single Higgs) and the order (NLO) considered here, however, we have explicitly verified that the results obtained by rescaling λ_{3} are not only gauge invariant and finite, but also equivalent to those obtained, for example, by adding the O_{6} operator of the SMEFT.

Results : total cross sections

$$
\begin{aligned}
& \delta \sigma=\left(\kappa_{\lambda}-1\right) C_{1}+\left(\kappa_{\lambda}^{2}-1\right) C_{2} \\
& C_{2}=-9.514 \cdot 10^{-4} \text { for } \kappa_{\lambda}= \pm 20 \\
& C_{2}=-1.536 \cdot 10^{-3} \text { for } \kappa_{\lambda}=1
\end{aligned}
$$

Results : differential production

$C_{1}^{\sigma}[\%]$	25 GeV	50 GeV	100 GeV	200 GeV	500 GeV	
$W H$	$1.71(0.11)$	$1.56(0.34)$	$1.29(0.72)$	$1.09(0.94)$	$1.03(0.99)$	
$Z H$	$2.00(0.10)$	$1.83(0.33)$	$1.50(0.71)$	$1.26(0.94)$	$1.19(0.99)$	$p_{T}(H)<p_{T, \mathrm{cut}}$
$t \bar{t} H$	$5.44(0.04)$	$5.14(0.17)$	$4.66(0.48)$	$3.95(0.84)$	$3.54(0.99)$	

$C_{1}^{\sigma}[\%]$	1.1	1.2	1.5	2	3	
$W H$	$1.78(0.17)$	$1.60(0.36)$	$1.32(0.70)$	$1.15(0.89)$	$1.06(0.97)$	
$Z H$	$2.08(0.19)$	$1.86(0.38)$	$1.51(0.72)$	$1.31(0.90)$	$1.22(0.98)$	
$t \bar{t} H$	$8.57(0.02)$	$7.02(0.10)$	$5.11(0.43)$	$4.12(0.76)$	$3.64(0.94)$	$m_{\text {tot }}<K \cdot m_{\text {thr }}$

The largest effects are non-local and at threshold: corrections to ttH and HV processes can be seen as induced by a Yukawa potential, giving a Sommerfeld enhancement when the final states are non relativistic.

Results: Decay rates

$$
\delta \mathrm{BR}_{\lambda_{3}}(i)=\frac{\left(\kappa_{\lambda}-1\right)\left(C_{1}^{\Gamma}(i)-C_{1}^{\Gamma_{\text {tot }}}\right)}{1+\left(\kappa_{\lambda}-1\right) C_{1}^{\Gamma_{\text {tot }}}}
$$

$C_{1}^{\Gamma}[\%]$	$\gamma \gamma$	$Z Z$	$W W$	$f \bar{f}$	$g g$
on-shell H	0.49	0.83	0.73	0	0.66

Further questions

- Is the sensitivity of the various processes large enough to set constraints?
- Can we start to exploit such a sensitivity now, to close the gap between the current bounds ($\left|\mathrm{k}_{\lambda}\right| \leqslant 10-20$) and the EFT-relevant region $\left(-2 \leqslant \mathrm{k}_{\lambda} \leqslant 4\right)$?
-What are the minimal theoretical assumptions that are needed to guarantee that the interpretations at large values of k_{λ} are robust?

The first global sensitivity study

We have performed a first sensitivity study using the 8 TeV data on rates and projecting on the future LHC measurements.
We performed a one-parameter fit, assuming the other Higgs couplings to be SM like.

$$
\begin{aligned}
\mu_{i}^{f}= & \frac{\sigma_{i} \cdot \mathrm{~B}^{f}}{\left(\sigma_{i}\right)_{\mathrm{SM}} \cdot\left(\mathrm{~B}^{f}\right)_{\mathrm{SM}}}=\mu_{i} \cdot \mu^{f} \\
\mu_{i} & =1+\delta \sigma_{\lambda_{3}}(i) \\
\mu^{f} & =1+\delta \mathrm{BR}_{\lambda_{3}}(f)
\end{aligned}
$$

Rates: $\mu_{\mathrm{i}}^{\mathrm{f}}\left(\mathrm{k}_{\lambda}\right)$

The first global sensitivity study

Minimization of $\quad \chi^{2}\left(\kappa_{\lambda}\right) \equiv \sum_{\bar{\mu}_{i}^{f} \in\left\{\bar{\mu}_{i}^{f}\right\}} \frac{\left(\mu_{i}^{f}\left(\kappa_{\lambda}\right)-\bar{\mu}_{i}^{f}\right)^{2}}{\left(\Delta_{i}^{f}\left(\kappa_{\lambda}\right)\right)^{2}}$
 p-value $\left(\kappa_{\lambda}\right)=1-F_{\chi_{(n)}^{2}}\left(\chi^{2}\left(\kappa_{\lambda}\right)\right)$
$\kappa_{\lambda}<-14.3$
Excluded at more than 2σ

Future runs

Exercise 0:
 $$
\begin{aligned} & \bar{\mu}_{i}^{f}=1 \\ & \kappa_{\lambda}^{\text {best }}=1 \end{aligned}
$$

$$
\begin{aligned}
& \text { "CMS-II" }\left(300 \mathrm{fb}^{-1}\right) \\
& \kappa_{\lambda}^{1 \sigma}=[-1.8,7.3], \quad \kappa_{\lambda}^{2 \sigma}=[-3.5,9.6], \quad \kappa_{\lambda}^{p>0.05}=[-6.7,13.8]
\end{aligned}
$$

"CMS-HL-II" $\left(3000 \mathrm{fb}^{-1}\right)$

$$
\kappa_{\lambda}^{1 \sigma}=[-0.7,4.2], \quad \kappa_{\lambda}^{2 \sigma}=[-2.0,6.8], \quad \kappa_{\lambda}^{p>0.05}=[-4.1,9.8]
$$

A few comments

* Our first sensitivity study using only total rates at 8 TeV indicates the possibility of exploiting the precision of single Higgs measurements to independently bound the trilinear self coupling.
* The structure of the corrections in $\mathrm{ggH}, \mathrm{ZH}, \mathrm{WH}, \mathrm{ttH}$ and in the decays, shows that a sensitivity would remain in principle even if the SM assumption for the other Higgs couplings, for example in case k_{v} and k_{t}, is lifted.
* The importance of studying threshold regions for VH and ttH has been highlighted to provide further information.
* Our calculations are per-se independent of the interpretational framework (k-framework, linear EFT, non-linear EFT) and can be used in any of them. However, one should keep in mind that the validity of the loop expansion and the maximal acceptable range of k_{λ} depend on the assumptions inherent in the interpretations.
* The reliability of the interpretations at the current limits on k_{λ} is a model-dependent matter, common to single-H and HH studies. Models exist in the literature (portal models, accidentally light Higgs [Da liu et al, 1603.03064]) where effects in the Higgs potential can be sizeable and parametrically larger than those on the other couplings.

Conclusions and Outlook

* We have put forward the idea (and performed the corresponding calculations) of using the sensitivity of single-Higgs processes at NLO to the Higgs trilinear coupling to gather information on the Higgs potential.
* Our first exploration on the sensitivity shows that the method is promising and could become complementary to that of the direct HH measurements. Other recent studies support this conclusion.
* More work is needed on several important aspects: methodological (the use of distributions, progressively relaxing SM assumptions on other couplings,...), experimental (insertion and verification of sensitivity in the global fits,...) and theoretical (range of validity of the EFT expansions, relevance for actual models, ...).

Thanks

* Thanks to the HH subgroup for organising a discussion on this proposal.
* Thanks to HH and Single-H collaborators : Davide, Giuseppe, Pier Paolo, Eleni Vryonidou, Ambresh Shivaji, Xiaoran Zhao, ...
* I am thankful for enlightening, patient and always very constructive discussions with:
* Christophe Grojean
- Roberto Contino
* Riccardo Rattazzi
* David Marzocca
- Andre David
* Uli Haisch

