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Supersymmetry across dimensions

Supersymmetric QFT presents us with unique opportunities to
probe the strong-coupling regime.

In particular, supersymmetry implies some wonderful simplification
of certain path integrals. This is known as supersymmetric
localization.

I would like to discuss supersymmetric QFT with four supercharges:

4d N = 1 → 3d N = 2 → 2d N = (2, 2)

We will consider gauge theories with a U(1)R symmetry.
They often flow to interesting superconformal theories in the IR.
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Supersymmetry in three dimensions

In this talk, we will focus on three-dimensional theories with
N = 2 supersymmetry (four supercharges).

Due to the lack of local anomalies in 3d, we have fewer tools to
characterize theories non-perturbatively. An important object, in
any 3d CFT, is the quantity:

FS3 = − log |ZS3 |

It plays the role of the central charge c in 2d (or a in 4d).

It can be computed exactly in any 3d N = 2 SCFT that can be
obtained in the IR of an N = 2 gauge theory.
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Supersymmetric partition functions
This ZS3 is an example of a supersymmetric partition function.

It is independent on the Weyl factor of the metric, and therefore
RG invariant. Thus we can compute it in the UV, and obtain FS3

of the IR theory.

More generally, we would like to consider partition functions on a
large class of three-manifolds:

M3 7→ ZM3

We choose to preserve two supercharges of opposite R-charge on
M3, such that:

{Q, Q̃} = LK ,

with K a real Killing vector. ThenM3 is a Seifert manifold.
[C.C., Dumitrescu, Festuccia, Komargodski, 2012]
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Supersymmetric partition functions
Note that:

• The partition function are supersymmetric—they are defined
as the path integral of the theory on a susy-preserving
geometric background. [Festuccia, Seiberg, 2011]

• In particular, fermions are periodic along any one-cycle. That
is, supersymmetry dictates a choice of spin structure onM3.

• We also consider insertion of certain half-BPS Wilson loops:

〈W1W2 · · · 〉M3

as well as other loop operators. They must be parallel to K,
to preserve supersymmetry. Note that:

ZM3 = 〈1〉M3
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Supersymmetric partition functions
Examples:

• The S3 partition function. Schematically:
[Kapustin, Willett, Yaakov, 2010; Jafferis, 2010; Hama, Hosomichi, Lee, 2010]

ZS3 =
∫
dσ eπikσ

2 Z1-loop
S3 (σ)

Here k is a CS level. The integral is over the Cartan
subalgebra h of g = Lie(G).

• The twisted S2 × S1 partition function of [Benini, Zaffaroni, 2015]:

ZS2×S1 =
∑

m∈ΓG∨

∮
JK

du

2πi e
2πiku Z1-loop

S2×S1(u)

with u = iσ − a0. Sum over gauge fluxes.
Contour integral (JK residue).
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Supersymmetric partition functions
More generally, we study 3d N = 2 theories onMg,p a U(1)
principal bundle over a Riemann surface:

S1 −→Mg,p
π−→ Σg

Here p is the first Chern class of the bundle.

Note that:

M0,0 ∼= S2 × S1 , M0,1 ∼= S3 , M1,0 ∼= T 3

Assumption: The K of the SUSY algebra generates the S1 fiber.
⇒ We don’t allow “squashing” ofM0,p

∼= S3/Zp, where K would have
a component along the S2 base.

Note that [Ohta, Yoshida, 2012] considered the same setup, however our
final results differ.
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3d N = 2 gauge theories

Consider a 3d N = 2 gauge theory, which consists of:
• Vector multiplet V for a gauge group G, with g = Lie(G).
• Chiral multiplets Φi in representations Ri of g.

We may also have interactions dictated by a superpotential W (Φ)
that preserves the R-symmetry U(1)R.

We also have supersymmetric CS terms:

SCS = k

4π

∫
M3

d3x
√
g(iεµνρaµ∂νaρ − 2σD + λ̃λ)

The level k is integer-quantized, k ∈ Z. That includes FI terms.
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Circle reduction
Consider the theory on R2 × S1, with S1 a circle of radius β. We
can expand all fields into KK modes:

φ =
∑
n∈Z

φn(z, z̄)einψ

and consider the 3d theory as a 2d theory with an infinite number
of fields, in 2d N = (2, 2) susy multiplets.

In particular, we have a 2d vector multiplet from the lowest mode
of the 3d vector multiplet: V2d = (aµ, u, ũ, λ, λ̃,D)

Here we defined the dimensionless field:

u = iβ(σ + ia0)

It is the lowest component of a twisted chiral multiplet:

[Q−, U ] = [Q̄+, U ] = 0
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A-twist on Σg × S1

It is natural to compactify R2. We can define the theory on any
(closed, oriented) Riemann surface Σg by the so-called topological
A-twist, which precisely preserves Q− and Q̄+. [Witten, 1988]

Note that we have the identification:

u ∼ u+ 1

due to large gauge transformations. Thus a more natural variable
is:

x = e2πiu

The observables of this 3d A-model are the topological correlators:

〈W1(x)W2(x) · · · 〉Σg×S1

W (x) are loop operators along S1, local operators on Σg.
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The Coulomb branch
The 3d theory has a classical Coulomb branch corresponding to
VEVs of σ and of the dual photon. The natural Coulomb branch
coordinates are the monopole operators:

T±a ∼ e±φ , φa = −2π
e2 σa + iϕa

which lie in 3d chiral multiplets.

On R2 × S1, we consider instead the “2d Coulomb branch”
spanned by:

ua , a = 1, · · · , rk(G)

The variables φa and ua are T-dual. [Aganagic, Hori, Karch, Tong, 2001]

In either variables, the classical Coulomb branch takes the form:

M ∼= M̃/WG , M̃ ∼= (C∗)rk(G)
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The Coulomb branch
At a generic point of M̃, the theory is abelian:

G→ H ∼=
rk(G)∏
a=1

U(1)a

Integrating out all massive modes, one obtains the two-dimensional
effective twisted superpotential:

W(u) =WCS(u) +W1-loop(u)

which governs the dynamics of the low-energy modes ua.
The ‘vacuum equations’ are called the Bethe equations:

exp
(

2πi∂W
∂ua

)
= 1 , w · û 6= û, ∀w ∈WG

The solutions are the “Bethe vacua”. [Nekrasov, Shatashvili, 2009]



Introduction 3d N = 2 on a circle Fibering operator Application: Dualities Localization Conclusion

The twisted superpotential: CS terms

The classical piece in the twisted superpotential comes from the 3d
CS interactions. Schematically:

WCS(u) =
∑
a

kaa
2 ua(ua + 1) +

∑
a>b

kabuaub + 1
24kg

It corresponds to:

SCS = kaa
4π

∫
(iaa ∧ daa + · · · ) + kab

2π

∫
(iaa ∧ dab + · · · )

+ kg
192π

∫
(iω ∧ dω + · · · )

Note the constant term in WCS, which is identified with the
gravitational CS level in 3d.
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The twisted superpotential: CS terms
The 3d twisted superpotential is defined modulo:

W ∼W + naua + n0 , na, n0 ∈ Z

In particular, for a U(1)k CS term, we have:

WCS = k

2 (u2 + u)

The linear term is physical for k an odd integer. This terms arises
because of the non-trivial spin structure imposed by supersymmetry
on Σg × S1. In the presence of a flux m ∈ Z on Σg, we have:

e−SCS = (−x)mk

This corrects previous sign mistakes in the literature.
Related comments appeared in [Seiberg, Senthilb, Wang, Witten, 2016].
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The twisted superpotential: Chiral multiplets

Consider next the integrating out of the chiral multiplets. For a
chiral multiplet Φ of gauge charge Q under G = U(1), we have:

WΦ(u) = − 1
2πi

∑
n∈Z

(Qu+ n) (log (Qu+ n)− 1)

Regularizing the sum over the KK modes, we find:

WΦ(u) = 1
(2πi)2Li2(e2πiQu)

The only scheme dependence of this result is through the addition
of CS terms.
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Aside: The parity anomaly
In 3d, there is a “parity anomaly” in quantizing a Dirac fermion
coupled to a (background) gauge field aµ: we cannot preserve
both gauge invariance and 3d “parity”.

Of course, we choose to preserve gauge invariance.
[Alvarez-Gaumé, Della Pietra, Moore, 1985]

Consider Φ with Q = 1. We claim that:

WΦ = 1
(2πi)2 Li2(x)

is a “U(1)− 1
2
quantization.” We have the contact terms:

κ = −1
2 , κg = −1

in two-point functions of conserved currents.
[C.C., Dumitrescu, Festuccia, Komargodski, Seiberg, 2012]
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Aside: The parity anomaly

CS terms shift these contact terms by integers:

κ = −1
2 + k , κg = −1 + kg

The superpotential WΦ has the limits:

lim
σ→∞

WΦ = 0 , lim
σ→−∞

WΦ = −1
2u(u+ 1)− 1

12 ,

that correspond to

κ = κg = 0 or κ = −1 , κg = −2

The correct treatment of parity anomalies clears some confusions
in the localization literature.
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The twisted superpotential
The full effective twisted superpotential is:

W =
∑
a

kaa
2 ua(ua + 1) +

∑
a>b

kabuaub +
∑
α

kαα
2 να(να + 1)

+
∑
α>β

kαβνανβ +
∑
a,α

kaαuaνβ + kg
24

+ 1
(2πi)2

∑
i

∑
ρi∈Ri

Li2(xρiyi)

with:
• The gauge parameters ua and xa = e2πiu as above.
• να and yα = e2πiνα for the flavor symmetry.
• All possible gauge, flavor, and flavor-gauge CS levels.
• ρi are the weights of Ri for the chiral Φi.
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Σg × S1 compactification

Going to the cohomology of Q−, Q̄+, we have a two-dimensional
topological quantum field theory (TQFT). This is defined on any
Σg via the A-twist.

Up to Q-exact terms, the TQFT effective action reads:

STQFT =
∫

Σg

(
−2fa

∂W(u)
∂ua

+ Λ̃aΛb∂
2W(u)
∂ua∂ub

)

+ i

2

∫
Σg
d2x
√
gΩ(u)R

with fa the abelian field strength of aµ and R the Ricci scalar.
see e.g. [Witten, 1993; Nekrasov, Shatashvili, 2014]
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The effective dilaton

The effective dilaton Ω(u) captures the coupling of the theory to
curved space. We have a classical contribution:

ΩCS(u) =
∑
a

kaRua +
∑
α

kαRνα + 1
2kRR

which come from supersymmetric U(1)R CS terms:

SCS = kaR
2π

∫
(iaa ∧ dA(R) + · · · ) + kαR

2π

∫
(iaα ∧ dA(R) + · · · )

+ kRR
4π

∫
(iA(R) ∧ dA(R) + · · · )

[C.C., Dumitrescu, Festuccia, Komargodski, Seiberg, 2012]

Note that Ω is defined modulo integers, Ω ∼ Ω + n.
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The effective dilaton

We also have one-loop contribution from the matter fields, and from
the W-bosons:

Ω(u) =
∑
a

kaRua +
∑
F

kFRνF + 1
2kRR

− 1
2πi

∑
i

(ri − 1)
∑
ρi∈Ri

log(1− xρiyi)

− 1
2πi

∑
α∈g

log(1− xα)

The two locally holomorphic functions W(u), Ω(u) fully determine
the A-model associated to any given 3d gauge theory.
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Charge quantization and gauge invariance

For the A-twist on Σg, we have:

− 1
8π

∫
Σg
d2x
√
gR = 1

2π

∫
dA(R) = g − 1

Dirac quantization: We take all R-charges to be integers.
All other gauge and flavor charges are similarly quantized. It
follows that all CS levels are integers.

This ensures that W, Ω are invariant under large gauge
transformations, ua ∼ ua + 1 or να ∼ να + 1, modulo the
ambiguities:

W ∼W + naua + nανα + n0 , Ω ∼ Ω + n ,

with na, nα, n0, n ∈ Z. Note: the linear term in WCS is crucial.
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Flux operator

In the presence of flavor symmetries, it is natural to consider
non-trivial background vector multiplets VF . We may turn on:

uF = νF ,
1

2π

∫
Σg
daF = nF

while preserving supersymmetry. This adds a piece to the effective
action:

Sflux =
∫

Σg

(
−2fF

∂W(u, ν)
∂νF

)
with fF = daF .



Introduction 3d N = 2 on a circle Fibering operator Application: Dualities Localization Conclusion

Flux operator

In particular, if we take

fF = 2π nF δ2(x− x0) ,

turning on background flux is equivalent to the insertion of a local
operator:

ΠF (u, ν)nF

in the path integral, with

ΠF (u, ν) = exp
(

2πi∂W
∂νF

)

We call ΠF the flux operator for the flavor symmetry U(1)F .
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Handle-gluing operator

Any 2d TQFT has a “handle-gluing operator” H:

The explicit form of H was known for the simplest LG models from
[Vafa, 1990], but the generalization to 2d gauge theories was only
investigated recently [Melnikov, Plesser, 2005; Nekrasov, Shatashvili, 2014].
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Handle-gluing operator

In any 2d TQFT, we have:

〈O〉Σg = 〈OHg〉CP 1 = TrV
(
Hg−1O

)
where V is the TQFT Hilbert space.

In the A-twisted theory, the handle-gluing operator can be seen as
a “flux operator for U(1)R”. It is given by: [Nekrasov, Shatashvili, 2014]

H(u, ν) = e2πiΩ(σ) det
ab

(
∂2W
∂ua∂ub

)

Note that ΠF and H are rational functions of the fugacities x, y.
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The Σg × S1 index
Let us define the set of Bethe vacua:

SBE =
{
ûa

∣∣∣∣ Πa(û, ν) = 1 , ∀a , w · û 6= û, ∀w ∈WG

}
/WG

and x̂ = e2πiû. Note that Πa are the gauge flux operators.

We then find the Σg × S1 twisted index:

ZΣg×S1(y; n) =
∑

x̂∈SBE

H(x̂, y)g−1∏
α

Πα(x̂, y)nα

This is the supersymmetric partition function on Σg × S1 in the
presence of the flavor background fluxes nα. It can also be derived
using supersymmetric localization.

[C.C., Kim, 2016; Benini, Zaffaroni, 2015, 2016]
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Wilson loops on Σg × S1

We can similarly insert Wilson loops along S1:

WR = TrR Pexp
(
−i
∫
S1
dxµ (aµ − iηµσ)

)
= TrR (x)

They reduce to twisted chiral operators on Σg (thus, independent
of the position on Σg).

We then have:〈
W
〉

Σg×S1
=

∑
x̂∈SBE

W (x̂)H(x̂, y)g−1∏
α

Πα(x̂, y)nα

This allows us to understand the fusion algebra of half-BPS Wilson
loops systematically. [CC, Kim, 2016]
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Seifert manifold compactification

This TQFT logic can be generalized. Let us consider a U(1)
principal bundle:

S1 −→Mg,p
π−→ Σg .

See also [Ohta, Yoshida, 2012].

This is the simplest example of a Seifert manifold.

Supersymmetry is preserved by a pull-back of the A-twist on Σ.
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The fibering operator
The introduction of a non-trivial fibration over Σg corresponds to
a local operator on Σg (or to a loop operator on Σg × S1).

The 2d N = (2, 2) theory obtained from 3d has a flavor symmetry:

GF × U(1)KK

The U(1)KK charge is the S1 momentum. The “graviphoton”
CKK
µ for U(1)KK sits in a two-dimensional vector multiplet. In

particular, there is a twisted mass:

mKK = β−1

A non-trivial fibration introduces a non-zero flux on the base:
1

2π

∫
Σg
dCKK = p ∈ Z
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The fibering operator

There exists a flux operator for U(1)KK , which we call the fibering
operator.

Reinstating dimensions, we find:

F(u, ν) ≡ exp
(

2πi ∂

∂mKK

(
mKKW(u, ν)

))

This leads to the explicit expression:

F(u, ν) = exp
(
2πi

(
W − ua∂uaW − να∂ναW

))
Note that the ambiguities of W cancel in F .
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The fibering operator
Importantly, the fibering operator is not gauge invariant. Instead,
we have the difference equations:

F(ua −ma, να − nα) = F(u, ν)
∏
a

Πa(u, ν)ma
∏
α

Πα(u, ν)nα ,

∀ma, nα ∈ Z. It is, however, gauge invariant on the Bethe vacua,
where Πa(û) = 1.

For instance, consider a U(1)k CS theory:

ΠCS = q(−x)k , FCS = e−πiku
2−2πiτu

for the gauge flux and fibering operators, with q = e2πiτ and τ the
FI term. We see that they satisfy the difference equation:

FCS(u− 1, τ) = ΠCS(u, τ)FCS(u, τ)
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The fibering operator for a chiral multiplet

The contribution of a chiral multiplet to the fibering operator is:

FΦ(u) = exp
( 1

2πiLi2
(
e2πiu

)
+ u log

(
1− e2πiu

))
This is a meromorphic function of u with poles at u = −1,−2, · · ·
and zeros at z = 1, 2, · · · .

We also have:

ΠΦ(u) = 1
1− x , FΦ(u− 1) = ΠΦ(u)FΦ(u)

FΦ(u) is closely related to the chiral multiplet S3 partition
function of [Jafferis, 2010; Hama, Hosomichi, Lee, 2010].
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The ZMg,p
partition function

We can then write the ZMg,p partition function as a sum over
Bethe vacua:

ZMg,p(ν; n) =
∑

û∈SBE

F(û, ν)pH(û, ν)g−1∏
α

Πα(û, ν)nα

We should note that:
• We have nα ∈ Zp (torsion fluxes onMg,p).
• Under large gauge transformations for any U(1)F ,

(ν, n) ∼ (u+ 1, n + p)

and ZMg,p is invariant due to the difference equations.
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A 3d quasi-TQFT

More generally, we find:

〈W (x)〉Mg,p
=

∑
û∈SBE

W (x̂)F(û)pH(û)g−1 ∏
α

Π(û)nα .

It implies: 〈
W
〉
Mg,p

=
〈
F(x)p W (x)

〉
Σg×S1

This generalizes results about pure CS theory [Blau, Thompson, 2006]
to any 3d N = 2 gauge theories with a U(1)R symmetry.

These N = 2 theories are “quasi-topological”—they only depend
on the Seifert structure, not on the metric.
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S3 vs. S2 × S1

In particular, the S3 partition function and the S2 × S1 twisted
index are very closely related:

ZS3 =
〈
F
〉
S2×S1

We also find the general equality:

〈W 〉S3 =
∫
dσ W (x)eπikσ2 Z1-loop

S3 (σ)

=
∑

û∈SBE

W (x̂)F(û)pH(û)−1

where x = e−2πσ in the first line. This can be proven relatively
straightforwardly.
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R-charge dependence onMg,p

To preserve supersymmetry onMg,p, we need a non-trivial
R-symmetry line bundle with:

c1(L(R)) = g − 1 ∈ Zp ⊂ H2(Mg,p,Z)

We then have a Dirac quantization on the R-charge, like in 2d.
We need r ∈ Z for the quasi-topological story to apply.

The U(1)R line bundle is trivial if g − 1 = 0 mod p.
We can then vary the R-charges continuously. This is important to
study N = 2 SCFTs on S3.

Our results naturally reproduce the expected R-charge dependence.
[C.C., Dumitrescu, Festuccia, Komargodski, 2014]
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R-charge dependence onMg,p

Example: On the round S3, we have:

ZΦ(σ, r) = FΦ(iσ + r − 1)

for a free chiral.

Comparing to the result of [Jafferis, 2010; Hama, Hosomichi, Lee, 2010]:

Z̃Φ
S3(σ) = e−

πi
2 (iσ+r−1)2+πi

12 FΦ(iσ + r − 1)

for any r ∈ R. Disagreement is just in the choice of quantization
scheme. (Previous results not gauge invariant.)
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Field theory dualities

The Bethe-equation formula leads to a simple way to match
supersymmetric partition functions across field theory dualities
(Seiberg duality, 3d mirror symmetry,...).

Given a duality between theories T and TD, two operators are dual:

O ∈ T ↔ OD ∈ TD

if and only if
O(û) = OD(ûD)

for any pairs û and ûD of dual vacua (dual solutions to the Bethe
equations).
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Field theory dualities

Given the mapping of Bethe equations (which can be analysed in
flat space), the duality statement in curved space reads:

F(û) = FD(ûD)

H(û) = HD(ûD)

Flux operators are similarly matched:

ΠF (û) = ΠF,D(ûD)

but that follows from the equality for fibering operators.
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Example: U(1) 1
2
with Φ dual to free chiral T

Consider a chiral Φ of charge 1 under U(1) 1
2
. We have:

W(u, τ) = 1
(2πi)2Li2(x) + τu+ 1

2u(u+ 1)

The single Bethe equation gives:

x̂ = (1− q)−1 , q ≡ e2πiτ

We then have the on-shell superpotential (with Ŵ = (2πi)2W):

Ŵ(x̂(q), q) = Li2
( 1

1− q

)
− log(q) log(1− q) + 1

2
(
log2(q − 1) + π2

)
By a well-known dilog identity, this is equal to:

ŴD(q) = Li2(q) + π2

6
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Example: U(1) 1
2
with Φ dual to free chiral T

This implies:

F(x̂, q) = FD(q) , ΠT (x̂, q) = ΠT,D(q)

Similarly, we have:

Ω(u, τ) = − 1
2πi(r − 1) log(1− x)

and
ΩD(τ) = − 1

2πi(−r) log(1− q) + kDTRτ + 1
2k

D
RR

so kDTR = kDRR = −r. This implies

H(x̂, q) = HD(q)
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The integral formula

By a localization argument in the UV, one can obtain (for p 6= 0):

ZMg,p =
(−1)r

|WG|
∑
m∈Zr

p

∫
Cη
dru F(u)p Πa(u)ma Πα(u)nα e2πi(g−1)Ω(u)H(u)g

• Sum over torsion fluxes m. (Mg,p topological sectors.)
• F the fibering operator.
• Πa, Πα gauge and flavor flux.
• Cη, with η ∈ ih∗ is a “JK contour”. The contour is a
conjecture for higher-rank, well-understood for r = 1.

Argument similar to [Benini, Eager, Hori, Tachikawa, 2013; Hori, Kim, Yi, 2014]
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Conclusions

• For theories with 4 supercharges, “half-BPS” curved-space
supersymmetry is intimately related to the two-dimensional
A-twist. [Dumitrescu, Festuccia, Seiberg, 2012, CC, Dumitrescu, Festuccia,
Komargodski, 2012]

• We used this fact to compute supersymmetric partition
functions of 3d N = 2 gauge theories. We obtained new
localization result on the familyMg,p. This unifies some
previous results.

• ZMg,p is fully determined by W,Ω.

• Considering a larger family of backgrounds lead us to clarify a
number of subtle points about localization results, especially
some subtle phases related to CS contact terms.
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Outlook

• There is an analog story for 4d N = 1 theories on T 2!
Fibering operator given in terms of elliptic gamma functions.

• Bethe formula similar to surgery prescription in pure CS
theory. Can we push this point of view? This might lead to
results for any Seifert manifold.

• At genus g = 0, it would be interesting to generalize our 2d
approach to the “squashing” ofM0,p ∼= S3/Zp.

• Relation to holomorphic blocks? [Beem, Dimofte, Pasquetti, 2012]

• Our results lead to interesting challenges for the 3d/3d
correspondence. [Dimofte, Gaiotto, Gukov, 2011]
What is the TQFT dual of ZMg,p?
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