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• QCD basics

✤ Lagrangian, coupling, quark masses, PDFs

• QCD and the Higgs boson

✤ Production, decays, pT distribution

• Monte Carlo event generation

✤ Monte Carlo basics

✤ Event generator components

✤ Improvements: matching and merging

• Survey of results
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• a,b = 3 colours of quarks

• A,B,C = 8 (≈3x3) colours of gluons

• tC = 8 3x3 independent traceless hermitian matrices 
[generators of colour SU(3) group]

• [tA,tB] = ifABCtC algebra of SU(3)

• All strong interaction physics determined by 7 
parameters: 

✤ But these need to be renormalized :
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QCD Running Coupling
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Consider a dimensionless quantity R depending on a single hard scale Q, 

24 2 Asymptotic freedom and confinement

However µ is an arbitrary parameter. The Lagrangian of QCD makes
no mention of the scale µ, even though a choice of µ is required to define
the theory at the quantum level. Therefore, if we hold the bare coupling
fixed, physical quantities such as R cannot depend on the choice made for
µ. Since R is dimensionless, it can only depend on the ratio Q2/µ2 and
the renormalized coupling αS . Mathematically, the µ independence of R
may be expressed by

µ2 d

dµ2
R(Q2/µ2,αS) ≡

[

µ2 ∂

∂µ2
+ µ2 ∂αS

∂µ2

∂

∂αS

]

R = 0 . (2.1)

To rewrite this equation in a more compact form we introduce the nota-
tions

t = ln

(

Q2

µ2

)

, β(αS) = µ2∂αS

∂µ2
. (2.2)

The derivative of the coupling in the definition of the β function is per-
formed at fixed bare coupling. We rewrite Eq. (2.1) as

[

− ∂

∂t
+ β(αS)

∂

∂αS

]

R(et,αS) = 0 . (2.3)

This first order partial differential equation is solved by implicitly defining
a new function – the running coupling αS(Q2) – as follows:

t =
∫ αS(Q2)

αS

dx

β(x)
, αS(µ2) ≡ αS . (2.4)

By differentiating Eq. (2.4) we see that

∂αS(Q2)

∂t
= β(αS(Q2)),

∂αS(Q2)

∂αS
=
β(αS(Q2))

β(αS)
(2.5)

and hence that R(1,αS(Q2)) is a solution of Eq. (2.3). The above analysis
shows that all of the scale dependence in R enters through the running of
the coupling constant αS(Q2). It follows that knowledge of the quantity
R(1,αS), calculated in fixed-order perturbation theory, allows us to pre-
dict the variation of R with Q if we can solve Eq. (2.4). In the next section,
we shall show that QCD is an asymptotically free theory. This means that
αS(Q2) becomes smaller as the scale Q increases. For sufficiently large
Q, therefore, we can always solve Eq. (2.4) using perturbation theory.

2.2 The β function

The running of the coupling constant αS is determined by the renormal-
ization group equation,

Q2 ∂αS

∂Q2
= β(αS). (2.6)
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30 9. Quantum chromodynamics

Preliminary determinations of αs from CMS data on the ratio of inclusive 3-jet to
2-jet cross sections [259], at NLO, and from the top-quark cross section [301], in
NNLO, quote values of αs(M2

Z) = 0.1148± 0.0014(exp.)± 0.0018(PDF)+0.0050
−0.0000(scale) and

αs(M2
Z) = 0.1151+0.0033

−0.0032, respectively, indicating many new results to be expected for
inclusion in upcoming reviews.

9.3.11. Electroweak precision fits :
The N3LO calculation of the hadronic Z decay width was used in a revision of the global
fit to electroweak precision data [349], resulting in αs(M2

Z) = 0.1193± 0.0028, claiming a
negligible theoretical uncertainty. For this Review the value obtained in Sec. Electroweak
model and constraints on new physics from data at the Z-pole, αs(M2

Z) = 0.1197± 0.0028
will be used instead, as it is based on a more constrained data set where QCD corrections
directly enter through the hadronic decay width of the Z. We note that all these
results from electroweak precision data, however, strongly depend on the strict validity
of Standard Model predictions and the existence of the minimal Higgs mechanism to
implement electroweak symmetry breaking. Any - even small - deviation of nature from
this model could strongly influence this extraction of αs.

0.11 0.12 0.13
αα    ((ΜΜ    ))s ΖΖ

Lattice
DIS 
e+e- annihilation

τ-decays 

Z pole fits 

Figure 9.3: Summary of values of αs(M2
Z) obtained for various sub-classes

of measurements (see Fig. 9.2 (a) to (d)). The new world average value of
αs(M2

Z) = 0.1185 ± 0.0006 is indicated by the dashed line and the shaded band.

9.3.12. Determination of the world average value of αs(M2
Z) :

Obtaining a world average value for αs(M2
Z) is a non-trivial exercise. A certain

arbitrariness and subjective component is inevitable because of the choice of measurements
to be included in the average, the treatment of (non-Gaussian) systematic uncertainties
of mostly theoretical nature, as well as the treatment of correlations among the various
inputs, of theoretical as well as experimental origin.

We have chosen to determine pre-averages for classes of measurements which are
considered to exhibit a maximum of independence between each other, considering
experimental as well as theoretical issues. These pre-averages are then combined to the
final world average value of αs(M2

Z), using the χ2 averaging method and error treatment
as described above. The five pre-averages are summarized in Fig. 9.3; we recall that these

December 18, 2013 12:00

Bethke, Dissertori, Salam, RPP 2016

Lattice (MZ)

aS(MZ)=0.1174(16) [non-lattice]
aS(MZ)=0.1184(12) [lattice]

FLAG WG: Aoki et al., 1607.00299
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• QCD on a (hyper)cubic lattice

• Ideally

• Quark-antiquark potential:

10

Lattice QCD

hOi =
Z

[dA][dq][dq̄]O e�
R
d4

xL

a ! 0 , L ! 1
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FLAG WG: Aoki et al., 1607.00299
Collaboration Ref. Nf pu

bl
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al
e

pe
rt
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be
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uu
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ex
tr
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n

αMS(MZ) Method Table

HPQCD 14A [5] 2+1+1 A ◦ ⋆ ◦ 0.11822(74) current two points 45
ETM 13D [645] 2+1+1 A ◦ ◦ ! 0.1196(4)(8)(16) gluon-ghost vertex 46
ETM 12C [646] 2+1+1 A ◦ ◦ ! 0.1200(14) gluon-ghost vertex 46
ETM 11D [647] 2+1+1 A ◦ ◦ ! 0.1198(9)(5)(+0

−5) gluon-ghost vertex 46

Bazavov 14 [61] 2+1 A ◦ ⋆ ◦ 0.1166(+12
−8 ) Q-Q̄ potential 42

Bazavov 12 [600] 2+1 A ◦ ◦ ◦ 0.1156(+21
−22) Q-Q̄ potential 42

HPQCD 10 [9] 2+1 A ◦ ⋆ ◦ 0.1183(7) current two points 45
HPQCD 10 [9] 2+1 A ◦ ⋆ ⋆ 0.1184(6) Wilson loops 44
JLQCD 10 [609] 2+1 A ! ! ! 0.1118(3)(+16

−17) vacuum polarization 43
PACS-CS 09A [62] 2+1 A ⋆ ⋆ ◦ 0.118(3)# Schrödinger functional 41
Maltman 08 [63] 2+1 A ◦ ◦ ⋆ 0.1192(11) Wilson loops 44
HPQCD 08B [152] 2+1 A ! ! ! 0.1174(12) current two points 45
HPQCD 08A [613] 2+1 A ◦ ⋆ ⋆ 0.1183(8) Wilson loops 44
HPQCD 05A [612] 2+1 A ◦ ◦ ◦ 0.1170(12) Wilson loops 44

QCDSF/UKQCD 05[621] 0, 2 → 3 A ⋆ ! ⋆ 0.112(1)(2) Wilson loops 44
Boucaud 01B [640] 2 → 3 A ◦ ◦ ! 0.113(3)(4) gluon-ghost vertex 46
SESAM 99 [619] 0, 2 → 3 A ⋆ ! ! 0.1118(17) Wilson loops 44
Wingate 95 [620] 0, 2 → 3 A ⋆ ! ! 0.107(5) Wilson loops 44
Davies 94 [618] 0, 2 → 3 A ⋆ ! ! 0.115(2) Wilson loops 44
Aoki 94 [617] 2 → 3 A ⋆ ! ! 0.108(5)(4) Wilson loops 44
El-Khadra 92 [616] 0 → 3 A ⋆ ! ◦ 0.106(4) Wilson loops 44

# Result with a linear continuum extrapolation in a.

Table 47: Results for αMS(MZ). Nf = 3 results are matched at the charm and bottom
thresholds and scaled to MZ to obtain the Nf = 5 result. The arrows in the Nf column
indicates which Nf (Nf = 0, 2 or a combination of both) were used to first extrapolate to
Nf = 3 or estimate the Nf = 3 value through a model/assumption. The exact procedures
used vary and are given in the various papers.

As can be seen from the tables and figures, at present there are several computations satis-
fying the criteria to be included in the FLAG average. Since FLAG 13 two new computations

of α(5)

MS
(MZ), Bazavov 14 [61] and HPQCD 14A [5], pass all our criteria with a ◦. We note

that none of those calculations of α(5)

MS
(MZ) satisfy all of our more stringent criteria: a ⋆ for

the renormalization scale, perturbative behaviour and continuum extrapolation. The results,
however, are obtained from four different methods that have different associated systematics,
and agree quite well within the stated uncertainties.

198
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Running quark mass
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µ2 d↵s

dµ2
= �(↵s)↵s = �↵2

s (�0 + �1↵s + . . .)

Couplings and masses (parameters in Lagrangian) must 
all be renormalised, hence masses also scale dependent 

µ2 dmq

dµ2
= �(↵s)mq = �↵s(�0 + �1↵s + . . .)mq

dmq

mq
=

d↵s

↵s

�(↵s)

�(↵s)

mq(µ) = mq(µ0)


↵s(µ)

↵s(µ0)

� �0
�0

⇢
1 +

✓
�1
�0

� �1�0
�2
0

◆
[↵s(µ)� ↵s(µ0)] + . . .

�

solve RGE numerically or perturbatively

m(µ) = m(µ0)
[ αs(µ)
αs(µ0)

]γ0
m/β0

[
1+

(γ1
m
β0

−
β1γ

0
m

β2
0

)(αs(µ)
π

−
αs(µ0)
π

)
+ . . .

]

µ (GeV)

m
b(
µ

) (
G

eV
)

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

10 10 2

mb(mb) = 4165 MeV

mb(10GeV) = 3610 MeV

mb(MZ) = 2836 MeV

mb(161GeV) = 2706 MeV

10

�0 =
1

⇡
�0
�0

=
12

33� 2nf
⇡ 1
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FLAG WG: Aoki et al., 1310.8555

Collaboration Ref. pu
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mu md mu/md

PACS-CS 12⋆ [76] A ⋆ ! ! ⋆ a 2.57(26)(7) 3.68(29)(10) 0.698(51)
Laiho 11 [77] C ◦ ⋆ ⋆ ◦ − 1.90(8)(21)(10) 4.73(9)(27)(24) 0.401(13)(45)
HPQCD 10‡ [73] A ◦ ⋆ ⋆ ⋆ − 2.01(14) 4.77(15)
BMW 10A, 10B+ [22, 23] A ⋆ ⋆ ⋆ ⋆ b 2.15(03)(10) 4.79(07)(12) 0.448(06)(29)
Blum 10† [32] A ◦ ! ◦ ⋆ − 2.24(10)(34) 4.65(15)(32) 0.4818(96)(860)
MILC 09A [37] C ◦ ⋆ ⋆ ◦ − 1.96(0)(6)(10)(12) 4.53(1)(8)(23)(12) 0.432(1)(9)(0)(39)
MILC 09 [15] A ◦ ⋆ ⋆ ◦ − 1.9(0)(1)(1)(1) 4.6(0)(2)(2)(1) 0.42(0)(1)(0)(4)
MILC 04, HPQCD/
MILC/UKQCD 04

[36, 82] A ◦ ◦ ◦ ! − 1.7(0)(1)(2)(2) 3.9(0)(1)(4)(2) 0.43(0)(1)(0)(8)

RM123 13 [45] A ◦ ⋆ ◦ ⋆ c 2.40(15)(17) 4.80 (15)(17) 0.50(2)(3)
RM123 11⊕ [104] A ◦ ⋆ ◦ ⋆ c 2.43(11)(23) 4.78(11)(23) 0.51(2)(4)
Dürr 11∗ [61] A ◦ ⋆ ◦ − − 2.18(6)(11) 4.87(14)(16)
RBC 07† [34] A ! ! ⋆ ⋆ − 3.02(27)(19) 5.49(20)(34) 0.550(31)

⋆ The calculation includes e.m. and mu ̸= md effects through reweighting.
‡ Values obtained by combining the HPQCD 10 result for ms with the MILC 09 results for ms/mud and
mu/md.

+ The fermion action used is tree-level improved.
∗ Values obtained by combining the Dürr 11 result for ms with the BMW 10A, 10B results for ms/mud and
mu/md.
⊕ mu, md and mu/md are obtained by combining the result of RM123 11 for (md −mu) [104] with
mud = 3.6(2)MeV from ETM 10B. (md −mu) = 2.35(8)(24)MeV in [104] was obtained assuming
ϵ = 0.7(5) [1] and ϵm = ϵπ0 = ϵK0 = 0. In the quoted results, the first error corresponds to the lattice
statistical and systematic errors combined in quadrature, while the second arises from the uncertainties
associated with ϵ.
† The calculation includes quenched e.m. effects.
a The masses are renormalized and run nonperturbatively up to a scale of 100GeV in the Nf = 2 SF
scheme. In this scheme, nonperturbative and NLO running for the quark masses are shown to agree
well from 100 GeV all the way down to 2 GeV [64].

b The masses are renormalized and run nonperturbatively up to a scale of 4 GeV in the Nf = 3 RI/MOM
scheme. In this scheme, nonperturbative and N3LO running for the quark masses are shown to agree
from 6 GeV down to 3 GeV to better than 1% [23].

c The masses are renormalized nonperturbatively at scales 1/a ∼ 2÷ 3GeV in the Nf = 2 RI/MOM
scheme. In this scheme, nonperturbative and N3LO running for the quark masses are shown to agree
from 4 GeV down 2 GeV to better than 3% [71].

Table 5: Lattice results for mu, md (MeV) and for the ratio mu/md. The values refer to the
MS scheme at scale 2 GeV. The upper part of the table lists results obtained with Nf = 2+1,
while the lower part presents calculations with Nf = 2.

Instead of subtracting electromagnetic effects using phenomenology, RBC 07 [34] and
Blum 10 [32] actually include a quenched electromagnetic field in their calculation. This
means that their results include corrections to Dashen’s theorem, albeit only in the presence
of quenched electromagnetism. Since the up- and down-quarks in the sea are treated as
degenerate, very small isospin corrections are neglected, as in MILC’s calculation.

PACS-CS 12 [76] takes the inclusion of isospin-breaking effects one step further. Using
reweighting techniques, it also includes electromagnetic and mu −md effects in the sea.

Lattice results for mu, md and mu/md are summarized in Table 5. In order to discuss

36
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MS masses at 2 GeV:

Manohar, Sachrajda, Barnett, RPP 2016

mu = 2.15 ± 0.15 MeV

md = 4.70 ± 0.20 MeV

ms = 93.5 ± 2.0 MeV

– 17–

Figure 2: The allowed region (shown in white)
for up quark and down quark masses. This re-
gion was determined in part from papers report-
ing values for mu and md (data points shown)
and in part from analysis of the allowed ranges
of other mass parameters (see Fig. 3). The pa-
rameter (mu + md)/2 yields the two downward-
sloping lines, while mu/md yields the two rising
lines originating at (0,0).

for one of these, the b quark mass in the 1S-scheme [58,59].

Other schemes that have been proposed are the PS-scheme [60]

and the kinetic scheme [61].

October 1, 2016 19:58
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Charm quark mass
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Bodenstein et. al 10
HPQCD 10
HPQCD + Karlsruhe 08
Kuehn, Steinhauser, Sturm 07
Buchmueller, Flaecher 05
Hoang, Manohar 05
Hoang, Jamin 04
deDivitiis et al. 03
Rolf, Sint 02
Becirevic, Lubicz, Martinelli 02
Kuehn, Steinhauser 01
QWG 2004
PDG 2010

mc(3 GeV) (GeV)

   finite energy sum rule, NNNLO

   lattice + pQCD

   lattice + pQCD

   low-moment sum rules, NNNLO

   B decays αs
2β0

   B decays αs
2β0

   NNLO moments

   lattice quenched

   lattice (ALPHA) quenched

   lattice quenched

   low-moment sum rules, NNLO

0.8 0.9 1 1.1 1.2 1.3 1.4

42mc(3 GeV) = 0.986(6) GeV

mc(mc) = 1.268(9) GeV

mc(MH) = 0.612(5) GeV

J Kühn, 2013
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Bottom quark mass
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HPQCD 10
Karlsruhe 09
Kuehn, Steinhauser, Sturm 07
Pineda, Signer 06
Della Morte et al. 06
Buchmueller, Flaecher 05
Mc Neile, Michael, Thompson 04
deDivitiis et al. 03
Penin, Steinhauser 02
Pineda 01
Kuehn, Steinhauser 01
Hoang 00
QWG 2004
PDG 2010

mb(mb) (GeV)

   low-moment sum rules, NNNLO, new Babar

   low-moment sum rules, NNNLO

   Υ sum rules, NNLL (not complete)

   lattice (ALPHA) quenched

   B decays αs
2β0

   lattice (UKQCD)

   lattice quenched

   Υ(1S), NNNLO

   Υ(1S), NNLO

   low-moment sum rules, NNLO

   Υ sum rules, NNLO

4.1 4.2 4.3 4.4 4.5 4.6 4.7

46

J Kühn, 2013

mb(10 GeV) = 3.617(25) GeV
mb(mb) = 4.164(30) GeV

mb(MH) = 2.768(21) GeV
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mb from QCD sum rules
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❍  CLEO (1985)/1.28
▼  BABAR (2009)

√s (GeV)

R b(
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.6 10.7 10.8 10.9 11 11.1 11.2 11.3

BELLE?

44

Analysis in NNLO

Coefficients C̄n from three-loop one-scale tadpole amplitudes with

“arbitrary” power of propagators;

25

Mn =

Z
ds

sn+1
Rb(s) =

9

4
e2b

✓
1

4m2
b(µ)

◆n

Cn(↵s, µ) mb(µ) =
1

2

✓
9e2bCn(↵s, µ)

4Mn

◆ 1
2n

↵2
s

(~700 diagrams). . .+ ↵3
s

n mb(10GeV) exp αs µ total mb(mb)
1 3597 14 7 2 16 4151
2 3610 10 12 3 16 4163
3 3619 8 14 6 18 4172
4 3631 6 15 20 26 4183

Consistency (n= 1,2,3,4) and stability (O(α2s ) vs. O(α3s ));

(slight dependence on n could result from input into M n
exp)

• mb(10GeV) = 3610±16MeV

• mb(mb) = 4163±16MeV

well consistent with KSS 2007

45

mb(10 GeV) = 3.610(16) GeV

Chetyrkin et al., PRD80(2009)074010
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VOLUME 79, NUMBER 20 P HY S I CA L REV I EW LE T T ER S 17 NOVEMBER 1997

lived the quark. In particular, the fact that the top-quark
lifetime is much less than L21

QCD is irrelevant.
Such an argument implies that the nonperturbative

aspect of the strong interaction will stand in the way
of any attempt to unambiguously extract the top-quark
pole mass from experiment. For example, consider the
extraction of the pole mass from the peak in the Wb
invariant-mass distribution. In perturbation theory, the
final state is a W and a b quark, as depicted in Fig. 2(a).
However, the b quark manifests itself experimentally as
a jet of colorless hadrons, due to confinement. At least
one of the quarks which resides in these hadrons comes
from elsewhere in the diagram, and cannot be considered
as a decay product of the top quark, as depicted in
Fig. 2(b). This leads to an irreducible uncertainty in the
Wb invariant mass of OsLQCDd and, hence, an ambiguity
of this amount in the extracted top-quark pole mass.
We now turn to an investigation of the top-quark

pole mass from the perspective of infrared renormalons.
We first review the argument which demonstrates the
existence of a renormalon ambiguity in the pole mass of a
stable heavy quark [8,9]. We then extend the argument
to take into account the finite width of the top quark.
Finally, we investigate the existence of a renormalon
ambiguity in the top-quark width itself.
The pole mass of a quark is defined by the position of the

pole in the quark propagator. The propagator of a quark
of four-momentum p is

Dspyd ≠
i

py 2 mR 2 Sspyd
, (1)

where mR is a renormalized short-distance mass [by short-
distance mass we mean a running mass (such as the MS
mass) evaluated at a scale m ¿ LQCD], and Sspyd is the
renormalized one-particle irreducible quark self-energy.
The equation for the position of the pole is an implicit
equation that can be solved perturbatively:

pypole ≠ mR 1 Sspypoled ≠ mR 1 Ss1dsmRd 1 . . . , (2)

where Ss1dsmRd is the one-loop quark self-energy shown
in Fig. 3(a). This quantity is real, so the pole position
is real.
Renormalons arise from the class of diagrams generated

by the insertion of n vacuum-polarization subdiagrams
into the gluon propagator in the one-loop self-energy
diagram, as shown in Fig. 3(a′). One can express this as

FIG. 2. The production and decay of a top quark in (a) per-
turbation theory and (b) nonperturbatively.

Ss1dsmR , ad ≠
16mR

3b0

X̀

n≠0
cnan11, (3)

where

a ;
b0assmRd

4p
(4)

and b0 is the one-loop QCD beta-function coefficient,
b0 ; 11 2 s2y3dNf . Formally, these are the domi-
nant QCD corrections in the “large-b0” limit. Thus
Ss1dsmR, ad in Eq. (3) is calculated at leading order in as,
but to all orders in a.
For large n the coefficients cn grow factorially, and are

given by [8,9,17]
cn

n!`! e2Cy22nn! , (5)
where C is a finite renormalization-scheme-dependent
constant (in the MS scheme, C ≠ 25y3). The series in
Eq. (3) is therefore divergent. One can attempt to sum
the series using the technique of Borel resummation [18].
The Borel transform (with respect to a) of the self-energy
is obtained from the series coefficients, Eq. (5), via

eSs1dsmR , ud ≠
16mR

3b0

X̀

n≠0

cn

n!
un, (6)

where u is the Borel parameter. Because the coefficients
cn are divided by n! in the above expression, the
series has a finite radius of convergence in u, and can
be analytically continued into the entire u plane. The
self-energy is then reconstructed via the inverse Borel
transform, given formally by

Ss1dsmR , ad ≠
Z `

0
du e2uya eSs1dsmR , ud . (7)

The integral in Eq. (7) is only formal, because the Borel
transform of the quark self-energy possesses singularities
on the real-u axis, which impede the evaluation of the
integral. These singularities are referred to as infrared
renormalons because they arise from the region of soft
gluon momentum in Fig. 3(a′). The series for the self-
energy in Eq. (3) is therefore not Borel summable.
The divergence of the series for the self-energy is gov-

erned by the infrared renormalon closest to the origin,
which lies at u ≠ 1y2. This renormalon is not associated

FIG. 3. Diagrams contributing to the top quark self-energy at
leading order in as and aW . sa0d replaces (a) when summing
to all orders in b0as.

3826

cn ⇠ 2nn! ⇠ (2n/e)n

Asymptotic expansion: sum to smallest term (n~L/2)

Ambiguity ~ smallest term (cn an+1~ e-L/2 ~ L/mq)

D( 6p) = i

6p�mq � ⌃( 6p)

6p
pole

= mq + ⌃( 6p) = mq + ⌃(1)(mq) + . . .

⌃(1)(mq) =
16mq

3�0

1X

n=0

cn a
n+1

m
pole

= mq(mq)
�
1 + 0.4244↵

s

(mq) + 0.835↵2

s

(mq) + 2.375↵3

s

(mq)
⇤
+O(⇤)

Renormalon ambiguity
(There is no pole!)

a =

�0↵s(mq)

4⇡
⇠ 1

log(m2
q/⇤

2
)

⌘ 1

L
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“Direct” (≈pole mass?) measurements:

mt(pole) = 173.1±0.9 GeV

Liss, Maltoni, Quadt, RPP 2016

mt(mt) = 163.35±0.85 GeV
mt(mt) = 160+4.84.3 GeV from cross section

– 25–

The direct measurements of the top-quark mass, such as

those shown in Table 1, strictly speaking, is the corresponding

parameter used in the Monte Carlo generators. The relation

between the parameter in the Monte Carlo generator and

the pole mass is affected by non-perturbative contributions,

which could be order 1 GeV/c2 [147], i.e., comparable to the

measurement uncertainty.

Table 1: Measurements of top-quark mass from
Tevatron and LHC.

∫

Ldt is given in fb−1. The
results shown are mostly preliminary (not yet
submitted for publication as of August 2015);
for a complete set of published results see the
Listings. Statistical uncertainties are listed first,
followed by systematic uncertainties.

mt (GeV/c2) Source
∫

Ldt Ref. Channel

172.99 ± 0.48 ± 0.78 ATLAS 4.6 [123] ℓ+jets+ℓℓ

172.04 ± 0.19 ± 0.75 CMS 19.7 [124] ℓ+jets

172.47 ± 0.17 ± 1.40 CMS 19.7 [131] ℓℓ

172.32 ± 0.25 ± 0.59 CMS 19.7 [134] All jets

174.34 ± 0.37 ± 0.52 CDF,DØ (I+II)≤9.7 [145] publ. or prelim.

173.34 ± 0.27 ± 0.71 Tevatron+LHC ≤8.7+≤4.9 [3] publ. or prelim.

With the discovery of a Higgs boson at the LHC with a mass

of about 126 GeV/c2 [148,149], the precision measurement of

the top-quark mass takes a central role in the question of the

stability of the electroweak vacuum because top-quark radiative

corrections tend to drive the Higgs quartic coupling, λ, negative,

potentially leading to an unstable vacuum. A recent calculation

at NNLO [150] leads to the conclusion of vacuum stability for a

Higgs mass satisfying MH ≥ 129.4 ± 5.6 GeV/c2 [151]. Given

the uncertainty, a Higgs mass of 126 GeV/c2 satisfies the limit,

but the central values of the Higgs and top-quark masses put

October 1, 2016 19:58
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• Non-perturbative physics takes place over a much longer 
time scale, with unit probability

• Hence it cannot change the cross section

• Scale dependences of parton distribution functions and 
hard process cross section are perturbatively calculable, 
and cancel order by order

• Residual scale dependence is (part of) theory uncertainty

momentum 
fractions

parton 
distribution 

functions at scale 

hard process cross 
section, renormalised 

at scale

( (

�pp!X(s) =
X

i,j

Z 1

0
dx1 dx2 fi(x1, µ

2
F )fj(x2, µ

2
F )�̂ij!X

�
x1x2s,↵S(µ

2
R), µ

2
F , µ

2
R

�

µF µR
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• PDFs measured in various processes at various scales

• Global fits satisfying evolution equations give PDF sets

• Generally done at NNLO nowadays

µ
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Figure 3.1: The NNPDF3.1 NNLO PDFs, evaluated at µ2 = 10 GeV2 (left) and µ2 = 104 GeV2 (right).

3.3 Parton distributions

We now inspect the baseline NNPDF3.1 parton distributions, and compare them to NNPDF3.0
and to MMHT14 [7], CT14 [6] and ABMP16 [8]. The NNLO NNPDF3.1 PDFs are displayed
in Fig. 3.1. It can be seen that although charm is now independently parametrized, it is still
known more precisely than the strange PDF. The most precisely determined PDF over most of
the experimentally accessible range of x is now the gluon, as will be discussed in more detail
below.

In Fig. 3.2 we show the distance between the NNPDF3.1 and NNPDF3.0 PDFs. According
to the definition of the distance given in Ref. [95], d ' 1 corresponds to statistically equivalent
sets. Comparing two sets with Nrep = 100 replicas, a distance of d ' 10 corresponds to a
di↵erence of one-sigma in units of the corresponding variance, both for central values and for
PDF uncertainties. For clarity only the distance between the total strangeness distributions
s+ = s + s̄ is shown, rather than the strange and antistrange separately. We find important
di↵erences both at the level of central values and of PDF errors for all flavors and in the entire
range of x. The largest distance is found for charm, which is independently parametrized in
NNPDF3.1, while it was not in NNPDF3.0. Aside from this, the most significant distances are
seen in light quark distributions at large x and strangeness at medium x.

In Fig. 3.3 we compare the full set of NNPDF3.1 NNLO PDFs with NNPDF3.0. The
NNPDF3.1 gluon is slightly larger than 3.0 in the intermediate-x region, while it becomes
smaller at larger x, with significantly reduced PDF errors. The NNPDF3.1 light quarks and
strangeness are larger than 3.0 at intermediate x, with the largest deviation seen for the strange
and antidown PDFs, while at both small and large x there is good agreement between the
two PDF determinations. The best-fit charm PDF of NNPDF3.1 is significantly smaller in the

22

24

PDF Evolution
Ball et al., 1706.00428
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Figure 3.1: The NNPDF3.1 NNLO PDFs, evaluated at µ2 = 10 GeV2 (left) and µ2 = 104 GeV2 (right).

3.3 Parton distributions

We now inspect the baseline NNPDF3.1 parton distributions, and compare them to NNPDF3.0
and to MMHT14 [7], CT14 [6] and ABMP16 [8]. The NNLO NNPDF3.1 PDFs are displayed
in Fig. 3.1. It can be seen that although charm is now independently parametrized, it is still
known more precisely than the strange PDF. The most precisely determined PDF over most of
the experimentally accessible range of x is now the gluon, as will be discussed in more detail
below.

In Fig. 3.2 we show the distance between the NNPDF3.1 and NNPDF3.0 PDFs. According
to the definition of the distance given in Ref. [95], d ' 1 corresponds to statistically equivalent
sets. Comparing two sets with Nrep = 100 replicas, a distance of d ' 10 corresponds to a
di↵erence of one-sigma in units of the corresponding variance, both for central values and for
PDF uncertainties. For clarity only the distance between the total strangeness distributions
s+ = s + s̄ is shown, rather than the strange and antistrange separately. We find important
di↵erences both at the level of central values and of PDF errors for all flavors and in the entire
range of x. The largest distance is found for charm, which is independently parametrized in
NNPDF3.1, while it was not in NNPDF3.0. Aside from this, the most significant distances are
seen in light quark distributions at large x and strangeness at medium x.

In Fig. 3.3 we compare the full set of NNPDF3.1 NNLO PDFs with NNPDF3.0. The
NNPDF3.1 gluon is slightly larger than 3.0 in the intermediate-x region, while it becomes
smaller at larger x, with significantly reduced PDF errors. The NNPDF3.1 light quarks and
strangeness are larger than 3.0 at intermediate x, with the largest deviation seen for the strange
and antidown PDFs, while at both small and large x there is good agreement between the
two PDF determinations. The best-fit charm PDF of NNPDF3.1 is significantly smaller in the
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Relevant PDFs (relatively) 
well known at x ~ MH/√s

Can be improved (in principle)

Parton luminosity
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Figure 5.10: Same as Fig. 5.8, now comparing NNPDF3.1 NNLO to CT14 and MMHT14.

Finally, in order to further emphasize the phenomenological impact of the new NNPDF3.1
methodology, we compare NNPDF3.1 PDFs to the modified version in which the charm PDF
is perturbatively generated, already discussed in Sects. 3.4, 5.3. Results are shown in Fig. 5.12.
On the one hand, we confirm that despite having one more parametrized PDF, uncertainties are
not increased. On the other hand, the e↵ect on central values is moderate but non-negligible.
For gluon-gluon and quark-gluon luminosities, di↵erences are always below the one-sigma level,
and typically rather less. For the quark-quark channel, results do not depend on the charm
treatment for M

X ⇠> 200 GeV, but for smaller invariant masses perturbatively generated charm
leads to a larger PDF luminosity than the best-fit parametrized charm. For the quark-antiquark
luminosity, we find a similar pattern at small M

X

, but also some di↵erences at medium and
large M

X

.

70

Ball et al., 1706.00428



Bryan Webber CERN-Fermilab HCP School 2017

 QCD and the 
Higgs Boson

26

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG
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Georgi et al. 
PRL40(1978)692

Jones & Petcov 
PLB84(1979)440

Kunszt
NPB247(1984)339

Glashow et al. 
PRD18(1978)1724
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• Scale dependence (13 TeV, mt   ∞)
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Gluon fusion cross section

Anastasiou et al., JHEP 05(2016)058 (arXiv:1602.00695)

8. Recommendation for the LHC

In previous sections we have considered various e↵ects that contribute to the gluon-fusion

Higgs production cross-section at higher orders. In this section we combine all these e↵ects,

and as a result we are able to present the most precise prediction for the gluon-fusion cross-

section available to date. In particular (for the Setup 1 of Tab. 1) for a Higgs boson with

a mass mH = 125 GeV, the cross-section at the LHC with a center-of-mass energy of 13

TeV is

� = 48.58 pb+2.22 pb (+4.56%)
�3.27 pb (�6.72%) (theory)± 1.56 pb (3.20%) (PDF+↵s) . (8.1)

Equation (8.1) is one of the main results of our work. In the following, we will analyze it

in some detail.

Let us start by commenting on the central value of the prediction (8.1). Since eq. (8.1)

is the combination of all the e↵ects considered in previous sections, it is interesting to see

how the final prediction is built up from the di↵erent contributions. The breakdown of the

di↵erent e↵ects is:

48.58 pb = 16.00 pb (+32.9%) (LO, rEFT)

+20.84 pb (+42.9%) (NLO, rEFT)

� 2.05 pb (�4.2%) ((t, b, c), exact NLO)

+ 9.56 pb (+19.7%) (NNLO, rEFT)

+ 0.34 pb (+0.2%) (NNLO, 1/mt)

+ 2.40 pb (+4.9%) (EW, QCD-EW)

+ 1.49 pb (+3.1%) (N3LO, rEFT)

(8.2)

where we denote by rEFT the contributions in the large-mt limit, rescaled by the ratio

RLO of the exact LO cross-section by the cross-section in the EFT (see Section 5). All the

numbers in eq. (8.2) have been obtained by setting the renormalization and factorization

scales equal to mH/2 and using the same set of parton densities at all perturbative orders.

Specifically, the first line, (LO, rEFT), is the cross-section at LO taking into account only

the top quark. The second line, (NLO, rEFT) are the NLO corrections to the LO cross-

section in the rescaled EFT, and the third line, ((t, b, c), exact NLO), is the correction

that needs to be added to the first two lines in order to obtain the exact QCD cross-section

through NLO, including the full dependence on top, bottom and charm quark masses.

The fourth and fifth lines contain the NNLO QCD corrections to the NLO cross-section

in the rescaled EFT: (NNLO, rEFT) denotes the NNLO corrections in the EFT rescaled

by RLO, and (NNLO, 1/mt) contains subleading corrections in the top mass at NNLO

computed as an expansion in 1/mt. The sixth line, (EW, QCD-EW), contains the two-

loop electroweak corrections, computed exactly, and three-loop mixed QCD-electroweak

corrections, computed in an e↵ective theory approach. The last line, (N3LO, rEFT), is

the main addition of our work and contains the N3LO corrections to the NNLO rEFT

cross-section, rescaled by RLO. Resummation e↵ects, within the resummation frameworks

studied in Section 4, contribute at the per mille level for our choice of the central scale,

µ = mH/2, and are therefore neglected.

– 38 –

LO

NLO

NNLO

N3LO

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

20

40

60

80

μ/mH (μ=μR=μF)

σ e
ft
(p
b)
setup 1, EFT, 13 TeV

Figure 8: The dependence of the cross-section on a common renormalization and factorization
scale µ = µF = µR.

�scale
EFT,k

LO (k = 0) ±14.8%

NLO (k = 1) ±16.6%

NNLO (k = 2) ±8.8%

N3LO (k = 3) ±1.9%

Table 5: Scale variation of the cross-section as defined in eq. (3.11) for a common renormalization
and factorization scale µ = µF = µR.

the treatment of both infrared and ultraviolet singularities. For a physical process such

as inclusive Higgs production, where one cannot identify very disparate physical scales,

large separations between the renormalization from the factorization scale entail the risk

of introducing unnecessarily large logarithms. In Fig. 8 we present the dependence of the

cross-section on a common renormalization and factorization scale µ = µR = µF . Through

N3LO, the behaviour is very close to the scale-variation pattern observed when varying

only the renormalization scale with the factorization scale held fixed. More precisely, using

the same quantifier as introduced in eq. (3.11) for the variation of the renormalization scale

only, the variation of the cross-section in the range [mH/4,mH ] for the common scale µ

is shown in Tab. 5. We observe that the scale variation with µR = µF is slightly reduced

compared to varying only the renormalization scale at NLO and NNLO, and this di↵erence

becomes indeed imperceptible at N3LO.

The scale variation is the main tool for estimating the theoretical uncertainty of a

cross-section in perturbative QCD, and it has been successfully applied to a multitude of

– 16 –
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not in any direct or trustworthy way) by existing NNLO computations6. We observe that

the NLO K-factor of this contribution is smaller than the NLO K-factor of pure top-

quark contributions in the cross-section. Therefore, we anticipate that the estimate of

the magnitude of the �t+b+c � �t correction at NNLO, based on the size of the top-only

NNLO K-factor in eq. (5.1), is a conservative estimate within the MS-scheme. However, as

we notice from the value of RNLO
scheme, there is a scheme dependence of ⇠ 30% at NLO. Our

preferred scheme is the MS-scheme due to the bad convergence of the perturbative series for

the conversion from an MS mass to a pole mass for the bottom and charm quarks [106, 107].

To account for the di↵erence with the OS scheme, we enlarge the uncertainty on �t+b+c��t,

as estimated via eq. (5.1) within the MS scheme, by multiplying it with a factor of 1.3,

�(t, b, c) = 1.3 �(t, b, c)MS . (5.3)

Let us conclude this section by commenting on the amount by which the cross-section

changes when the values of the quark masses used as input vary from those of Setup 1.

As argued in the previous section, the dependence on the rescaled EFT cross-section on

the top-quark mass is extremely mild. We will therefore focus in this section on the exact

QCD corrections (including the light quarks) through NLO, and we study the variation

of the cross-section when the quark masses are varied following the internal note of the

HXSWG [86], which either conforms to the PDG recommendation or is more conservative

(see Tab. 9). We see that the parametric uncertainties are entirely negligible, at the level

of 0.1% or below. Finally, the parametric uncertainty on the ration RLO does not exceed

0.1%. For this reason, we will not consider parametric uncertainties on quark masses any

further.

Table 9: Parametric uncertainties on quark masses.

Top quark Bottom quark Charm quark

�mt = 1 GeV �NLO
ex;t+b+c 34.77 �mb = 0.03 GeV �NLO

ex;t+b+c 34.77 �mc = 0.026 GeV �NLO
ex;t+b+c 34.77

mt + �mt �NLO
ex;t+b+c 34.74 mb + �mb �NLO

ex;t+b+c 34.76 mc + �mc �NLO
ex;t+b+c 34.76

mt � �mt �NLO
ex;t+b+c 34.80 mb � �mb �NLO

ex;t+b+c 34.79 mc � �mc �NLO
ex;t+b+c 34.78

6. Electroweak corrections

So far we have only considered higher-order QCD corrections to the gluon fusion cross-

section. However, in order to obtain precise predictions for the Higgs cross-section also

electroweak (EW) corrections need to be taken into account. The EW corrections to the

LO gluon fusion cross-section have been computed in ref. [40, 41, 42]. For a Higgs mass of

mH = 125 GeV, they increase the LO cross-section by 5.2%, and we take these corrections

into account in our cross-section prediction.

Given the large size of the NLO QCD corrections to the Higgs cross-section, we may

expect that also the EW corrections to the NLO QCD cross-section cannot be neglected.

6For first steps towards computing this contribution at NNLO we refer the reader to ref. [105].
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ECM � �(theory) �(PDF) �(↵s)

2 TeV 1.10 pb +0.04pb
�0.09pb(

+4.06%
�7.88%) ± 0.03 pb (± 3.17%) +0.04pb

�0.04pb(
+3.36%
�3.69%)

7 TeV 16.85 pb +0.74pb
�1.17pb(

+4.41%
�6.96%) ± 0.32 pb (± 1.89%) +0.45pb

�0.45pb(
+2.67%
�2.66%)

8 TeV 21.42 pb +0.95pb
�1.48pb(

+4.43%
�6.90%) ± 0.40 pb (± 1.87%) +0.57pb

�0.56pb(
+2.65%
�2.62%)

13 TeV 48.58 pb +2.22pb
�3.27pb(

+4.56%
�6.72%) ± 0.90 pb (± 1.86%) +1.27pb

�1.25pb(
+2.61%
�2.58%)

14 TeV 54.67 pb +2.51 pb
�3.67 pb (+4.58%

�6.71%) ±1.02 pb (± 1.86%) +1.43pb
�1.41pb(

+2.61%
�2.59%)

Table 10: Gluon-fusion Higgs cross-section at a proton-proton collider for various values of the
collision energy.

ECM � �(theory) �(PDF + ↵s)

7 TeV 15.13 pb +7.1%
�7.8%

+7.6%
�7.1%

8 TeV 19.27 pb +7.2%
�7.8%

+7.5%
�6.9%

Table 11: Earlier recommendation for the gluon-fusion Higgs cross-section at a proton-proton
collider by the Higgs Cross-Section Working Group [48].

ECM � �(theory) �(PDF + ↵s)

8 TeV 20.69 pb +8.37%
�9.26%

+7.79%
�7.53%

Table 12: Earlier recommendation for the gluon-fusion Higgs cross-section at a proton-proton
collider by some of the authors in ref. [120].

higher-order e↵ects from QCD, EW and quark-mass corrections. The main component

that made our computation possible was the recent computation of the N3LO correction

to the cross-section in an e↵ective field theory where the top quark was integrated out.

In an appendix we present analytic expressions for the partonic subchannels of the N3LO

partonic cross-sections which have not been presented elsewhere in the literature, in the

form of a series expansion around the threshold limit.

The N3LO corrections moderately increase (⇠ 3%) the cross-section for renormaliza-

tion and factorization scales equal to mH/2. In addition, they notably stabilize the scale

variation, reducing it almost by a factor of five compared to NNLO. The N3LO scale-

variation band is included entirely within the NNLO scale-variation band for scales in

the interval [mH/4,mH ]. Moreover, we have found good evidence that the N3LO scale

variation captures the e↵ects of missing higher perturbative orders in the EFT. We base

this conclusion on the following observations: First, we observed that expanding in ↵s

separately the Wilson coe�cient and matrix-element factors in the cross-section gives re-

sults consistent with expanding directly their product through N3LO. Second, a traditional

– 41 –
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Anastasiou et al., JHEP 05(2016)058 (arXiv:1602.00695)
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    GH = 4.10±0.09 MeV

Mode BR (%) dBR

bb 58.1 1.3

WW
*

21.5 0.6

gg 8.2 0.7

tt 6.3 0.2

cc 2.9 0.2

ZZ* 2.64 0.07

gg 0.227 0.008
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�(H ! qq̄) =
3
p
2

8⇡
GFMHm2

q(MH)

"
1�

4m2
q(MH)

M2
H

# 3
2

[1 + 1.803↵s(MH) + 2.953↵2
s (MH) + . . .]

Running of masses is enormously important!

mb2(MH)/mb2(pole) = (2.77/4.95)2 = 0.313 

mc2(MH)/mc2(pole) = (0.612/1.27)2 = 0.233 

Gb affects all branching ratios!

BR(X) =
�
X

�
tot

(known to 4th order)

�BR(X)

BR(X)
=

� �
b

�
tot

= 0.58
� �

b

�
b
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t,b

�gg =
↵2
sGFM3

H

64
p
2⇡3

�����
X

q

Iq

 
m2

q(MH)

M2
H

!�����

2
�
1 + 6.14↵s + 17.5↵2

s + 15.1↵3
s + . . .

�

b contributes ~ -6%, which almost cancels top mass effect
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Event Simulation for the LHC Higgs Centre Colloquium, 30/11/12

Higgs Production & Decay

73
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Event Simulation for the LHC Higgs Centre Colloquium, 30/11/12

Higgs Production & Decay
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b contributes less, so top mass effect is significant (~-2%)

W loop dominates 
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pTi Resummation of Higgs 
transverse momentum

qT = �
X

pTi

Bozzi et al. 0705.3887

Catani & Grazzini, 1011.3918
Mantry & Petriello, 0911.4135

de Florian et al. 1109.2109
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Large logs of mH2/qT2 need resummation

(N)LO �!
qT!0

(�)1



Bryan Webber CERN-Fermilab HCP School 2017

 Resummation of Higgs qT

39

1

�̂gg

d2�̂gg

dq2
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d� =

Z
dx1dx2 fa(x1, µ)fb(x2, µ) d�̂ab(x1x2s, µ, . . .)

Ag = CA = 3 , Bg = �1

6
(11CA � 2nf ) = �23

6



Bryan Webber CERN-Fermilab HCP School 2017

 Resummation of Higgs qT

40

⇠
Z

d2b

(2⇡)2
eib·qT

⇢
1 + ↵S

Z
d2pT


Ag

p2
T

ln
m2

H

p2
T

+
Bg

p2
T

� �
eib·pT � 1

�
+ . . .

�

1

�̂gg

d2�̂gg

dq2
T

⇠ �2(qT) + ↵S

Z
d2pT


Ag

p2
T

ln
m2

H

p2
T

+
Bg

p2
T

�

+

�2(qT + pT) + . . .

d� =

Z
dx1dx2 fa(x1, µ)fb(x2, µ) d�̂ab(x1x2s, µ, . . .)

Ag = CA = 3 , Bg = �1

6
(11CA � 2nf ) = �23

6



Bryan Webber CERN-Fermilab HCP School 2017

 Resummation of Higgs qT

41

⇠
Z

d2b

(2⇡)2
eib·qT

⇢
1 + ↵S

Z
d2pT


Ag

p2
T

ln
m2

H

p2
T

+
Bg

p2
T

� �
eib·pT � 1

�
+ . . .

�

1

�̂gg

d2�̂gg

dq2
T

⇠ �2(qT) + ↵S

Z
d2pT


Ag

p2
T

ln
m2

H

p2
T

+
Bg

p2
T

�

+

�2(qT + pT) + . . .

d� =

Z
dx1dx2 fa(x1, µ)fb(x2, µ) d�̂ab(x1x2s, µ, . . .)

⇠
Z

d

2b

(2⇡)2
e

ib·qT
exp

⇢
↵S

Z
d

2pT


Ag

p2
T

ln

m2
H

p2
T

+

Bg

p2
T

� �
e

ib·pT � 1

��

Ag = CA = 3 , Bg = �1

6
(11CA � 2nf ) = �23

6



Bryan Webber CERN-Fermilab HCP School 2017

 Resummation & matching of Higgs qT

42

⇠
Z

d2b

(2⇡)2
eib·qT

⇢
1 + ↵S

Z
d2pT


Ag

p2
T

ln
m2

H

p2
T

+
Bg

p2
T

� �
eib·pT � 1

�
+ . . .

�

1

�̂gg

d2�̂gg

dq2
T

⇠ �2(qT) + ↵S

Z
d2pT


Ag

p2
T

ln
m2

H

p2
T

+
Bg

p2
T

�

+

�2(qT + pT) + . . .

d� =

Z
dx1dx2 fa(x1, µ)fb(x2, µ) d�̂ab(x1x2s, µ, . . .)

⇠
Z

d

2b

(2⇡)2
e

ib·qT
exp

⇢
↵S

Z
d

2pT


Ag

p2
T

ln

m2
H

p2
T

+

Bg

p2
T

� �
e

ib·pT � 1

��

d�

dqT
=


d�

dqT

�

resum

�

d�

dqT

�

resum,NLO

+


d�

dqT

�

NLO

Ag = CA = 3 , Bg = �1

6
(11CA � 2nf ) = �23

6



Bryan Webber CERN-Fermilab HCP School 2017

 Higgs transverse momentum: 8 TeV
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Resummation affects spectrum out to larger qT

Peak at ~10 GeV:  log(mH2/qT2)~5.1
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 Higgs transverse momentum: 14 TeV

Peak at ~10 GeV:  log(mH2/qT2)~5.1

Resummation affects spectrum out to larger qT



Bryan Webber CERN-Fermilab HCP School 2017

Monte Carlo Higgs qT
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MC@NLO = Monte Carlo matched to NLO (see later)

HQT = resummed+matched qT (de Florian et al.)

RW = reweighted to resummed+matched scalar ET
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H ! �� - Di↵erential Fiducial Cross-section Measurements
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Both pH
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Though perhaps some hint for excess at high pH
T , as seen on previous slide with

H ! 4`?

Status of 125 GeV Higgs Boson Measurements 18 / 33

Andy Chisholm, LHCHXSWG, July 2017
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• QCD Basics

✤ aS and mq uncertainties ≈ 1%

✤ PDF uncertainties ≈ few %

• QCD and Higgs

✤ Cross section uncertainty ≈10%

✤ Decay uncertainties ≈ few to 10%

• QCD and Higgs transverse momentum

✤ Large log resummation

✤ Matched to NLO
47

Summary
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 Higgs qT & ET
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pTi

Higgs transverse momentum

qT = �
X

pTi

Radiated transverse energy

ET =
X

|pTi|

Bozzi et al. 0705.3887

Catani & Grazzini, 1011.3918
Mantry & Petriello, 0911.4135

de Florian et al. 1109.2109

Papaefstathiou, Smillie, BW, 1002.4375
+Grazzini, 1403.3394
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Large logs of mH2/ET2 need resummation

(N)LO �!
ET!0

(�)1
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to all orders in ↵s. The resummation applies to leading, next-to-leading and next-to-next-

to-leading logarithms of ET /Q ((N)NLL) where Q is the hard process scale, taken to be the

Higgs mass mH . Thus it improves the treatment of the small ET region, where the fixed-

order prediction diverges whereas the actual distribution must tend to zero as ET ! 0.

By matching the resummed prediction to the NLO one we improve the treatment of both

small and large ET .

Our approach follows on from Ref. [3], based in turn on the early work on ET resumma-

tion in vector boson production [4–6] and closely related to the resummation of transverse

momentum in vector boson [7, 8, 11] and Higgs production [10, 12]. We make a number of

improvements relative to Ref. [3], including:

• Predictions for the experimentally relevant Higgs mass of 126 GeV, at centre-of-mass

energies 8 and 14 TeV;

• Fixed-order predictions to NLO;

• Expansion of the ET resummation formula to NLO, and demonstration that to this

order all the logarithms are consistent with the fixed-order prediction;

• Matching of the resummed and NLO predictions across the whole range of ET ;

• A constraint on the perturbative unitarity of the prediction, using the method of

Ref. [9], which reduces the impact of logarithmic terms in the large-ET region;

• Monte Carlo studies of the e↵ects of rapidity cuts and preclustering.

The paper is organized as follows. In Section 2, we review the resummation calcula-

tion and then describe the necessary modifications to implement the unitarity condition

mentioned above. This involves new formalism and the evaluation of new integrals in this

prescription. In Section 3, we expand our resummed result to next-to-leading order in

order to match our results to the fixed-order prediction at this accuracy. This renders

our predictions positive throughout the ET -range. In Section 4, we investigate the ET

distribution further through Monte Carlo studies. We first reweight Monte Carlo results to

our analytic distribution and then investigate the impact of hadronisation and underlying

event. We end the main text in Section 5 with conclusions and discussion. A number of

appendices then contain supplementary results.

2. Resummation of logarithms

Here we summarize the results of refs. [3,5] as applied to Higgs production. The resummed

component of the transverse energy distribution in the process h1h2 ! HX at scale Q has

the form


d�H
dQ2 dET

�

res.

=
1

2⇡

X

a,b

Z 1

0
dx1

Z 1

0
dx2

Z +1

�1
d⌧ e�i⌧ET fa/h1

(x1, µ) fb/h2
(x2, µ)

· WH
ab (x1x2s;Q, ⌧, µ) (2.1)
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where fa/h(x, µ) is the parton distribution function (PDF) of parton a in hadron h at

factorization scale µ, taken to be the same as the renormalization scale here (we illustrate

the impact of varying this scale in section 3). In what follows we use the MS renormalization

scheme. To take into account the constraint that the transverse energies of emitted partons

should sum to ET , the resummation procedure is carried out in the domain that is Fourier

conjugate to ET . The transverse energy distribution (2.1) is thus obtained by performing

the inverse Fourier transformation with respect to the “transverse time”, ⌧ . The factor

WH
ab is the perturbative and process-dependent partonic cross section that embodies the

all-order resummation of the large logarithms ln(Q⌧). Since ⌧ is conjugate to ET , the limit

ET ⌧ Q corresponds to Q⌧ � 1.

As in the case of transverse momentum resummation [15], the resummed partonic cross

section can be written in the following form:

WH
ab (s;Q, ⌧, µ) =

Z 1

0
dz1

Z 1

0
dz2 Cga(↵S(µ), z1; ⌧, µ) Cgb(↵S(µ), z2; ⌧, µ) �(Q

2 � z1z2s)

· �H
gg(Q,↵S(Q)) Sg(Q, ⌧) . (2.2)

Here �H
gg is the cross section for the partonic subprocess of gluon fusion, gg ! H, through

a massive-quark loop:

�H
gg(Q,↵S(Q)) = �(Q2 �m2

H)�H
0 , (2.3)

where in the limit of infinite quark mass

�H
0 =

↵2
S(mH)GFm

2
H

288⇡
p
2

. (2.4)

Sg(Q, ⌧) is the appropriate gluon form factor, which in the case of ET resummation takes

the form [5,6]

Sg(Q, ⌧) = exp

⇢
�2

Z Q

0

dq

q


2Ag(↵S(q)) ln

Q

q
+Bg(↵S(q))

� �
1� eiq⌧

��
. (2.5)

The functions Ag(↵S), Bg(↵S), as well as the coe�cient functions Cga in Eq. (2.2), contain

no ln(Q⌧) terms and are perturbatively computable as power expansions with constant

coe�cients:

Ag(↵S) =
1X

n=1

⇣↵S

⇡

⌘n
A(n)

g , (2.6)

Bg(↵S) =
1X

n=1

⇣↵S

⇡

⌘n
B(n)

g , (2.7)

Cga(↵S, z) = �ga �(1� z) +
1X

n=1

⇣↵S

⇡

⌘n
C(n)
ga (z) . (2.8)

Thus a calculation to NLO in ↵S involves the coe�cients A
(1)
g , A(2)

g , B(1)
g , B(2)

g and C
(1)
ga .

Where logarithmically enhanced terms are concerned, knowledge of A(1)
g leads to the resum-

mation of the leading logarithmic (LL) contributions at small ET , which in the di↵erential
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Figure 3: Transverse-energy distribution in Higgs boson production at the LHC at 8 and 14 TeV.
Blue: resummed only. Red: resummed and matched to NLO. Green: NLO only. The solid curves
correspond to renormalization scale mH , the dashed to 2mH and mH/2.

Away from the small-ET region, the NLO data are then well described by a parametriza-

tion of the form
"
d�H
dET

� d�H
dqT

����
qT=ET

#

NLO

= Logarithmic terms +
a1ET

mH(mH + a2ET ) + a3E2
T

, (3.16)

as shown by the red curves in Fig. 2, with the parameter values shown.

To match the resummed and NLO ET distributions, we have to subtract the NLO

logarithmic terms (3.14), which are already included in the resummation, and replace

them by the full NLO result:

d�H
dET

=


d�H
dET

�

resum

�

d�H
dET

�

resum,NLO

+


d�H
dET

�

NLO

. (3.17)

3.3 Results

The resulting resummed and matched ET distributions at the LHC at 8 and 14 TeV are

shown in Fig. 3. For all these predictions we use the best-fit value B
(2)
g = �3.0 found

from the NLO data. The distribution peaks at around ET = 35 GeV at both centre-of-

mass energies, considerably above the peak in the Higgs transverse-momentum distribution,

around qT = 12 GeV [11]. Thus in the peak region of ET the resummed logarithms are

not so dominant as in the corresponding region of qT . On the other hand, the fixed-order

NLO prediction is rising rapidly and unphysically towards smaller values of ET .2

The purely resummed distribution becomes slightly negative at small and large ET ,

which is also unphysical. The e↵ect of matching is to raise the distribution to positive

values, close to the fixed-order prediction at high ET . The matched prediction is still

somewhat unstable at small ET , owing to the delicate cancellation of diverging logarithmic

2At very small ET it turns over and tends to �1, as seen in Fig. 1.
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 Transverse energy distribution

Peak at ~35 GeV:  log(mH2/ET2)~2.6

Resummation affects spectrum out to much larger ET

Unlike qT, the Underlying Event also contributes…


