

Precision measurements @ hadron colliders - 1

Richard Hawkings (CERN)

Hadron Collider Physics Summer School, 29/8/17

Introduction, measurement foundations and W/Z physics

Introduction

- Precision measurements at hadron colliders
 - Hadron colliders are 'messy', but can still do relevant 'precision' measurements
 - Precision can mean a few % (cross-sections), or even <<1% (W mass)
 - Not a complete overview of all precision measurements at hadron colliders, but showcase a few measurements in some detail
 - Also illustrating some of the 'foundations' e.g. object calibration, luminosity and beam energy measurements
 - Examples mainly from ATLAS, and from CMS, a few Tevatron comparisons
- Lecture 1
 - Introduction, W and Z final states, luminosity, parton distribution functions (PDFs)
- Lecture 2
 - Electroweak mixing angle, W mass, jet measurement and jet physics
- Lecture 3
 - Top physics (differential) cross-sections, top quark mass

Outline of lecture 1

- Introduction
 - Precision measurements and the electroweak fit
- The experimental environment
 - Comparison of LHC, Tevatron and LEP
- W/Z cross-sections
 - Importance of fiducial measurements
 - Calibration of lepton efficiencies and scales role of m_Z
 - LHC luminosity measurement
 - Parton distribution functions
- W/Z cross-section results
 - Results and constraints on PDFs

Thanks to Gautier Hamel de Monchenault for some diagrams ...

Why precision measurements?

- LHC is primarily a 'discovery machine' explore a new energy regime
 - Found the/a Higgs boson, what else will we find...?
- Can also perform precision measurements within the Standard Model
 - Improve on measurements of SM parameters
 - E.g. W vs top quark vs Higgs masses
 - E.g. $\alpha_{\rm s}$ in different processes, electroweak mixing angle $\sin^2 \theta_{
 m W}$
 - Study QCD dynamics at high energy, test QCD calculations
 - Improve knowledge of proton parton distribuiton functions (PDFs)
 - Test QCD with multiple high scales
 - Understand the physics of the top quark (the heaviest, and strangest quark)
 - Study the properties of the Higgs boson
 - Test SM predictions for very rare processes
- SM physics also forms the backdrop to any new physics search
 - Essential to fully understand background (particularly W/Z+jets and top) in order to search for new physics
 - SM physics processes (particularly W and Z decays to leptons) provide 'standard candles' to understand and calibrate the detector performance

Testing the consistency of the Standard Model

Electroweak parameters

$$\rho \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} \ \ \text{(= I)} \qquad s_W^2 \equiv 1 - \frac{m_W^2}{m_Z^2} \ \ \text{(= sin^2 \theta_W)} \label{eq:rhow}$$

Physical observables modified by radiative corrections at the % level

$$ar{
ho} = 1 + \Delta
ho \quad M_W^2 = m_W^2 \left(1 + \Delta r \right) \sin^2 \theta_W^{\text{eff}} = s_W^2 (1 + \Delta \kappa)$$

$$\Delta r, \Delta
ho, \Delta \kappa = f(m_t^2, \ln(m_H), \dots)$$

- Complementary info. from asymmetries
 - $e^+e^-\rightarrow e^+e^-$, $\mu^+\mu^-$, $bb\sim$ etc.

FB Asymmetry

$$A_{ ext{ iny FB}} = rac{\sigma_{ ext{ iny F}} - \sigma_{ ext{ iny B}}}{\sigma_{ ext{ iny F}} + \sigma_{ ext{ iny B}}}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} \propto 1 + \cos^2\theta + \frac{3}{8} \frac{A_{\mathrm{FB}}}{8} \cos\theta$$

Mass measurements, but also asymmetries...

at the Z pole:
$$A^{0\ f}_{\scriptscriptstyle{\mathrm{FB}}}=rac{3}{4}\mathcal{A}_e\,\mathcal{A}_f$$

Global electroweak fit

Comparison of measured and fitted electroweak parameters

GFitter group arXiv:1407.3792

ir	<u>, , , , , , , , , , , , , , , , , , , </u>	TTTI			-		ui/(i	V. 1 107.0702
M _H M _W	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 -1.4		Parameter	Input value	Free in fit	Fit Result	w/o exp. input in line
Γ _w M _z	**************************************	0.2 0.2	1110/	$M_H \; [{ m GeV}]^{(\circ)}$	125.14 ± 0.24	yes	125.14 ± 0.24	93^{+25}_{-21}
$\Gamma_{\mathbf{z}}$	### 00 HECKNOOL ### 00 HECKNOO	0.0	LHC/ Tevatron	$M_W \; [{ m GeV}]$	80.385 ± 0.015	_	80.364 ± 0.007	80.358 ± 0.008
σ ⁰ had		-1.5	icvation	Γ_W [GeV]	2.085 ± 0.042	-	2.091 ± 0.001	2.091 ± 0.001
R _{lep} A _{FB}	# # # # # # # # # # # # # # # # # # #	-1.0 -0.8	Г	M_Z [GeV]	91.1875 ± 0.0021	yes	91.1880 ± 0.0021	91.200 ± 0.011
A _i (LEP)	80 00 00 00 00 00 00 00 00 00 00 00 00 0	0.2		Γ_Z [GeV]	2.4952 ± 0.0023	_	2.4950 ± 0.0014	2.4946 ± 0.0016
A,(SLD)	2	-2.0		$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	-	41.484 ± 0.015	41.475 ± 0.016
sin ² $\Theta_{\mathrm{eff}}^{\mathrm{lept}}$ (Q _{FB})	60	-0.7	LED/	R_ℓ^0	20.767 ± 0.025	-	20.743 ± 0.017	20.722 ± 0.026
A _c	00 00 00 00 00 00 00 00 00 00 00 00 00	0.0	LEP/	$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	-	0.01626 ± 0.0001	0.01625 ± 0.0001
A _b	10	0.6	SLD	A_ℓ $^{(\star)}$	0.1499 ± 0.0018	-	0.1472 ± 0.0005	0.1472 ± 0.0005
A ^{0,c} FB	0 1	0.9		${ m sin}^2 heta_{ m eff}^\ell(Q_{ m FB})$	0.2324 ± 0.0012	-	0.23150 ± 0.00006	0.23149 ± 0.00007
A _{FB}		2.5		A_c	0.670 ± 0.027	-	0.6680 ± 0.00022	0.6680 ± 0.00022
R _c ⁰	E	0.0		A_b	0.923 ± 0.020	-	0.93463 ± 0.00004	0.93463 ± 0.00004
R _b ⁰	14	-0.8		$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	_	0.0738 ± 0.0003	0.0738 ± 0.0003
	# P P P P P P P P P P P P P P P P P P P	0.5		$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	-	0.1032 ± 0.0004	0.1034 ± 0.0004
$lpha_{s}(M_{Z}^{2})$ $\Delta lpha_{had}^{(5)}(M_{Z}^{2})$	\$300 000 000 000 000 000 000 000 000 000	1.7 -0.2		R_c^0	0.1721 ± 0.0030	-	$0.17226^{+0.00009}_{-0.00008}$	0.17226 ± 0.00008
had			L	R_b^0	0.21629 ± 0.00066	-	0.21578 ± 0.00011	0.21577 ± 0.00011
	-3 -2 -1 0 1 2 3	3	LHC/Tev	$m_t \; [{ m GeV}]$	173.34 ± 0.76	yes	$173.81 \pm 0.85^{(igtie)}$	$177.0^{+2.3}_{-2.4}(\nabla)$
	$(\mathbf{O}_{\text{fit}} - \mathbf{O}_{\text{mass}}) / \sigma_{\text{mass}}$			£°6-0.120.				

• LHC/Tevatron: m_W (and m_H, m_{top)}, asymmetries also interesting

29th August 2017 Richard Hawkings 6

W, top and Higgs masses

Impressive consistency of the direct and indirect determination of masses

Important in particular to measure m_W better (but already ∆m_W/m_W=0.02%)

The physics landscape at LHC

proton - (anti)proton cross sections

- LHC is a W/Z/H/top factory
 - But it is also a jet / b / soft interaction factory
 - Rates for nominal LHC, 13 TeV, L=10³⁴cm⁻²s⁻¹ 10⁷

Process	Rate @13TeV
Inelastic pp collision	10 ⁹ Hz
b-quark pair production	10 ⁶ Hz
Jet production, E _T >250 GeV	10 ³ Hz
W→Iv	10 ² Hz
Top-quark pair production	10 Hz
Higgs (m _H =125 GeV)	0.1 Hz

- Interesting processes a needle in a haystack^{0°}
 - Limited to recording 10² 10³ Hz of events
 - Trigger selections based on high-p_T electrons, photons, muons, taus, jets, E_T^{miss}
 - Cannot record all W→lν events
 - Control of trigger biases is crucial
 29th August 2017

The LHC experimental environment

- High pileup complicates precision physics measurements
 - Additional pp interactions in same bunch crossing, and in nearby bunch crossings for slow detectors
 - <*µ*>≈20 in run-1, higher in run-2
- Effects of pileup
 - Deterioration of jet and E_T^{miss} resolution, additional pileup jets
 - Higher trigger thresholds
 - Additional jets from pileup
 - Misidentification of primary vertex
 - Pileup-dependent efficiencies, even for leptons
- Pileup mitigation techniques
 - Particle flow (jets, E_T^{miss}, isolation)
 - Jet-area based pileup corrections Richard Hawkings

 $Z\rightarrow \mu\mu$ event with ~25 reconstructed vertices

20 cm

Comparison of LHC with LEP and Tevatron

Samples of W, Z and top-pair events at the different colliders

	LEP	Tevatron	LHC
Particles	e⁺e⁻	p-pbar	рр
√s (GeV)	88-209 GeV	1.8-1.96 TeV	7-13 TeV
Int. L/ expt	200-700 pb ⁻¹	2-10 fb ⁻¹	5-300 fb ⁻¹
Typical <μ>	<<1	~1-10	20-40
# W→lv /expt	10k	~1-2M	10M (in 5 fb ⁻¹)
# Z→II / expt	0.5M	~100k	1M (in 5 fb ⁻¹)
# ttbar / expt	-	10 ⁵	10 ⁷

- LEP e+e- collider
 - Very clean e⁺e⁻ events, Ws only produced in pairs, full event reconstruction, limited data samples, no top quarks
- Tevatron/LHC
 - Larger samples, pileup and underlying event, no complete reconstruction, tops

$Z\rightarrow \mu\mu$ at LEP and LHC

• OPAL e⁺e⁻ \rightarrow Z \rightarrow μ ⁺ μ ⁻ from 1993, ATLAS 13 TeV pp \rightarrow Z \rightarrow μ ⁺ μ ⁻ from 2015

Z and W cross-section measurements

Drell-Yan production: lepton pairs from quark-antiquark annihilation

- Boson rapidity is correlated with parton x_1 , x_2 gives information on proton PDFs
- •Studying both $Z/\gamma^* \rightarrow I^+I^-$ and $W \rightarrow I\nu$ allows disentangling quark flavours
- Experimentally, very attractive process:
 - •High p_T(>20 GeV) leptons easy to trigger, identify offline and measure precisely
 - Low backgrounds (dominant process giving high p_⊤ leptons at LHC)
 - 'Standard candle' for calibration measurements
 - Z has two leptons and the Z mass is precisely known from LEP

$Z\rightarrow$ ee and $Z\rightarrow\mu\mu$ event samples

arXiv:1612.03016

140

- Large cross-section: $\sigma(pp \rightarrow Z) \times BR(Z \rightarrow II) = 0.9$ nb at 7 TeV, \times 2 at 13 TeV
 - Final ATLAS 7 TeV analysis (4.6 fb⁻¹) has 1M Z \rightarrow ee and 1.6M Z $\rightarrow \mu\mu$
 - Pure samples <1% backgrounds from $Z\rightarrow \tau\tau$, dibosons, top and QCD multijet

Define total Z/γ^* cross-section in a mass window, e.g. 46<m_{||}<150 GeV

More $Z\rightarrow$ ee and $Z\rightarrow\mu\mu$ event samples

- Even small samples (<100 pb⁻¹) lead to 10⁴-10⁵ Z→II event samples</p>
 - Inclusive cross-section analyses do not need the full data statistics

Total and fiducial cross-section definitions

- Measurement of total cross-section from event counting in mass window
 - $\sigma^{\text{tot}} = (N-B) / (\varepsilon L)$
 - Efficiency ε includes both the lepton identification efficiencies ...
 - ..and probability of event to satify kinematic requirements for detector acceptance
 - E.g. $p_T > 20$ GeV (trigger, reconstruction) and $|\eta| < 2.5$ (coverage of detector)
 - Acceptance calculation needs a MC simulation model uncertainties can be large
- Alternative of fiducial cross-section 'measure what you detect'
 - Split efficiency ε into an acceptance A and recon efficiately C; ε =A × C
 - Define a fiducial phase space at particle level: $p_T^{fid} > 20 \text{ GeV}$, $|\eta^{fid}| < 2.5$

$$\sigma_{\overline{W} \to e(\mu)\nu[Z \to ee(\mu\mu)]}^{\text{fid,e}(\mu)} = \frac{N_{W[Z]} - B_{W[Z]}}{C_{W[Z]} \cdot L_{\text{int}}} \qquad C_{W[Z]} = \frac{N_{W[Z]}^{\text{MC,rec}}}{N_{W[Z]}^{\text{MC,gen,fid}}}$$

- Advantages avoid extrapolations into unmeasured phase space
 - Can make use of updated acceptance predictions once they become available
- Disadvantage acceptance calculation moved to theory (prediction)
 - Need to calculate $pp \rightarrow Z \rightarrow II$ with decay kinematics (at NLO, NNLO), not just $pp \rightarrow Z$
 - Becomes challenging for more complex final states, e.g. top-pair production

Lepton efficiency measurements

- $Z \rightarrow II$ (and $J/\psi, Y \rightarrow II$) used for **tag and probe** efficiency measurements
 - One tightly-identified lepton (tag), other with just a subset of requirements
 - E.g. loose track+calo match for electron, ID track only for muon
 - Z-mass requirement ensures probe sample is still dominated by real leptons
 - Efficiency of requirement under test can then be calibrated on this pure sample
 - Need careful background subtraction in the sample failing the requirement
 - Compare data and simulation results to derive correction factors for simulation

Lepton efficiency measurements – continued

- Typically achieve sub-percent precision
 - For lepton p_T close to those in Z decays
- More difficult at low p_T
 - $J/\psi, \Upsilon \rightarrow II$ harder to trigger on, poorer S/B
- More difficult at high p_T
 - Run out of statistics beyond Z-peak region
 - And relatively more background at high p_T
 - Extrapolation with MC-based inputs

Lepton energy/momentum calibration

- Z→II samples $(+J/\psi,Y\rightarrow II)$ also used for electron and muon energy calibration
 - For electrons, typically 'bottom up' cluster calibration+detailed material model
 - Final in-situ corrections using template fits to $Z\rightarrow$ ee data in bins of electron $|\eta|$
 - For muons, scale and resolution depend on ID alignment, muon chamber alignment and drift time calibration, magnetic field map, material, ...
 - In-situ corrections using $Z \rightarrow \mu\mu$ template fits in bins of η and ϕ
 - Typical scale uncertainties are below 10⁻³ in relevant p_T and η ranges

How do we know m_7 ?

- m₇ determined from Z-lineshape at LEP
 - Total cross-section for e⁺e⁻→hadrons vs √s
 - Measurements at peak and 6 off-peak energies
 - Fit to model to determine mZ, $\Gamma_{\rm Z}$ and $\sigma^0_{\rm had}$
 - 6 years of data-taking, 10 years of analysis... $m_{\rm Z} = 91.1875 \pm 0.0021 \, {\rm GeV} \, (0.002\%)$
- Uncertainty dominated by energy calibration
 - Based on technique of resonant depolarisation
 - Spin precession frequency of electrons

$$u = \frac{E[\text{MeV}]}{440.6486(1)[\text{MeV}]}$$

- Wait for polarisation to build up due to synchrotron radiation, find frequency of a depolarising magnetic field
- Many corrections to translate to physics data, e.g.
 - Lunar tides change the radius of LEP/LHC tunnel
 - Return current from electric trains (TGV)
- Only at LEP1 polarisation too weak above 100 GeV
 29th August 2017
 Richard Hawkings

$W\rightarrow e\nu$ and $W\rightarrow \mu\nu$ samples

- W selections also require the use of E_T^{miss} to measure the neutrino p_T
 - Cannot fully reconstruct the W boson mass as the neutrino p_Z is not measured
 - Use the transverse mass m_T : $m_T = \sqrt{2p_T^\ell p_T^{\text{miss}}} (1 \cos \Delta \phi)$,
 - Extract signal from E_T^{miss} or m_T distributions, cut and count or shape fit
 - Significant background from QCD multijet events; ~10% in W→eν, ~5% in W→μν

$W \rightarrow \mu \nu$ and $W \rightarrow e \nu$ event displays

 $p_{T}(\mu-) = 40 \text{ GeV}$ $\eta(\mu-) = 2.0$ $E_{T}^{\text{miss}} = 41 \text{ GeV}$ $M_{T} = 83 \text{ GeV}$

- Events from early 2010
 - Very little pileup, but still see tracks from underlying event accompanying the W boson production

Backgrounds in W (and Z)

- Backgrounds with **prompt** leptons (mainly top) evaluated from simulation
 - Reliable simulation of physics and selection efi.
- Backgrounds from QCD multi-jet more difficult
 - Jet misidentified as electron or muon due to
 - b/c hadron decay (b,c \rightarrow e, μ)
 - Hadron mis-ID as lepton (EM-like shower, $K, \pi \rightarrow \mu$)
 - Electron from photon conversion
 - Hard to model in simulation, uncertain jet x-sec
 - Rejection factors of ~10⁵ from lepton ID and isolation cuts – cannot simulate enough events
- Measure backgrounds from data control samples
 - E.g. invert lepton isolation or ID cuts and fit background in a control region close to signal
 - Shapes in signal region are distorted by relaxed cuts
 - Fit in different slices of isolation or kinematic variables and extrapolate to signal region

Uncertainties in W/Z fiducial cross-sections

arXiv:1612.0301

Systematic uncertainties on ATLAS 7 TeV precision W/Z fiducial x-sec

	$\delta\sigma_{W+}$	$\delta\sigma_{W-}$	$\delta\sigma_Z$	$\delta\sigma_{ m forward}Z$
m:	[%]	[%]	[%]	[%]
Trigger efficiency	0.03	0.03	0.05	0.05
Reconstruction efficiency	0.12	0.12	0.20	0.13
Identification efficiency	0.09	0.09	0.16	0.12
Forward identification efficiency	_	_	_	1.51
Isolation efficiency	0.03	0.03	_	0.04
Charge misidentification	0.04	0.06	_	_
Electron $p_{\rm T}$ resolution	0.02	0.03	0.01	0.01
Electron $p_{\rm T}$ scale	0.22	0.18	0.08	0.12
Forward electron $p_{\rm T}$ scale + resolution	_	_	_	0.18
$E_{\rm T}^{ m miss}$ soft term scale	0.14	0.13	_	_
$E_{\rm T}^{\rm miss}$ soft term resolution	0.06	0.04	_	_
Jet energy scale	0.04	0.02	_	_
Jet energy resolution	0.11	0.15	_	_
Signal modelling (matrix-element generator)	0.57	0.64	0.03	1.12
Signal modelling (parton shower and hadronization)	0.24	0.25	0.18	1.25
PDF	0.10	0.12	0.09	0.06
Boson $p_{\rm T}$	0.22	0.19	0.01	0.04
Multijet background	0.55	0.72	0.03	0.05
Electroweak+top background	0.17	0.19	0.02	0.14
Background statistical uncertainty	0.02	0.03	< 0.01	0.04
Unfolding statistical uncertainty	0.03	0.04	0.04	0.13
Data statistical uncertainty	0.04	0.05	0.10	0.18
Total experimental uncertainty	0.94	1.08	0.35	2.29
Luminosity			1.8	

29th August 2017 Richard Hawkings 23

Luminosity measurement – principles

Luminosity from a single pair of colliding bunches, rotation freq. f_r:

$$\mathcal{L}_{b} = \frac{\mu f_{r}}{\sigma_{inel}} \qquad \qquad \mathcal{L}_{b} = \frac{\mu_{vis} f_{r}}{\sigma_{vis}}$$

- Measure counting rate per bunch-crossing μ_{vis} for any lumi-dependent signal
 - Hit rate in a detector, current in a calorimeter, number of tracks/clusters ...
 - Poisson fluctuations in μ_{vis} , becomes saturated if $\mu_{vis} >> 1$
- Calibrate σ_{vis} from accelerator/beam parameters in dedicated low-lumi fills

$$\mathcal{L}_{b} = \frac{f_{f} n_{1} n_{2}}{2\pi \Sigma_{x} \Sigma_{y}} \qquad \qquad \sigma_{vis} = \mu_{vis}^{MAX} \frac{2\pi \Sigma_{x} \Sigma_{y}}{n_{1} n_{2}}$$

- Absolute luminosity calculated from number of protons per beam (n1,n2) bunch currents, and size of the overlap of the beams Σ_x , Σ_v in x and y planes
 - Dedicated 'van der Meer' fills with larger beam sizes and well-controlled conditions
- Many luminosity-dependent signals employed
 - Forward Cerenkov counters, diamond beam conditions monitors
 - Need to have deadtime-less readout, independent of high-level trigger
 - Calorimeter photomultiplier and HV gap currents integrate over all bunches
 - Pixel cluster counting and track counting

Luminosity measurement – vdM scan

- Scan beam separation in x or y plane
 - Determine beam widths Σ_x, Σ_v
 - Determine maximum count rate μ_{vis}^{MAX}
 - Measure bunch currents n₁ and n₂ from precise LHC instrumentation (DCCT)
 - O(1 min) per scan point, many scan points, (x,y), repeat scans...
 - Several days dedicated beam time
- Many complications
 - Absolute x/y displacement calibration
 - Use beamspot movement in tracker
 - Beam size (emmitance) growth within fill
 - Satellite bunches, ghost charge
 - Non-Gaussian beam shapes, tails
 - Non-factorisation: overlap $\neq \Sigma_x \Sigma_y$
 - Check with 'off-axis' scans
 - Beam-beam kicks, bunch-bunch variations

29th August 2017

Richard Hawkings

Luminosity measurement – transfer and stability

- vdM scans done 1-3 times/year, <μ>≈1
 - Calibrate each detector/algorithm σ_{vis}
- Extrapolate to physics environment
 - $< \mu > = 20 50, even higher soon$
 - Higher counting rates, non-linear effects, bunch trains, detector ageing
- Check consistency of different methods
 - Typically agreeing at ~% level after lots of effort, corrections several %
 - Differences evolve with time, can be pileup dependent
 - Which algorithms do you trust most?
 - E.g. two track-counting selections with the same detector diverge at 2% level
 - ATLAS mainly used BCM and Lucid, CMS pixel counting and FCal for final run-1 results
 - Additional approaches being explored at run-2

Luminosity measurement – final uncertainties

- Final uncertainties on integrated luminosity O(2-3%)
 - Tend to be dominated by calibration transfer to high-L, rather than vdM scans

ATLAS 8 TeV pp – △L/L=1.9%

	O 70
Source	Uncertainty [%]
Reference specific luminosity	0.50
Noise and background subtraction	0.30
Length-scale calibration	0.40
Absolute ID length scale	0.30
Subtotal, instrumental effects	0.77
Orbit drifts	0.10
Beam-position jitter	0.20
Beam-beam corrections	0.28
Fit model	0.50
Non-factorization correction	0.50
Emittance-growth correction	0.10
Bunch-by-bunch consistency	0.23
Scan-to-scan consistency	0.31
Subtotal, beam conditions	0.89
Bunch-population product	0.24
Total	1.20

TT , · ·	[70] 2 / 2 2
Uncertainty source	$\delta \mathcal{L}/\mathcal{L} [\%]$
van der Meer calibration	1.2
Afterglow subtraction	0.2
Calibration transfer from -scan to high-luminosity regime	1.4
Long-term drift correction	0.3
Run-to-run consistency	0.5
Total	1.9

CMS 8 TeV pp - △L/L=2.5%

	• •		
]	Systematic	correction (%)	uncertainty (%)
. Ī	Stability	-	1
اق	Dynamic inefficiencies	-	0.5
S	Afterglow	~ 2	0.5
transfer	Fit model	-	2
==	Beam current calibration	-	0.3
_[Ghosts and satellites	-0.4	0.2
<u>.</u>	Length scale	-0.9	0.5
at	Emittance growth	-0.1	0.2
d	Orbit Drift	0.2	0.1
calibration	Beam-beam	1.5	0.5
	Dynamic-β	-	0.5
Mb/	Total		2.5
\leq			

- C.f. Tevatron ∆L/L=6%, from counting rates wrt total inelastic cross-section
 - Latter inferred from inelastic/elastic rates, not vdM scans
 - Some measurements normalised to assumed Z cross-section

transfer

vdM calibration

29th August 2017

Richard Hawkings

W and Z cross-section results

Results from 7 TeV ATLAS analysis

Electrons	$\sigma^{ m fid,e}_{W o e u} \ [m pb]$
$W^+ \to e^+ \nu$	$2726 \pm 1 (\mathrm{stat}) \pm 28 (\mathrm{syst}) \pm 49 (\mathrm{lumi})$
$W^- \to e^- \bar{\nu}$	$1823 \pm 1 (\mathrm{stat}) \pm 21 (\mathrm{syst}) \pm 33 (\mathrm{lumi})$
	$\sigma^{ m fid,e}_{Z/\gamma^* o ee}~{ m [pb]}$
Central $Z/\gamma^* \to e^+e^-$	$439.5 \pm 0.4 (\mathrm{stat}) \pm 1.5 (\mathrm{syst}) \pm 7.9 (\mathrm{lumi})$
Forward $Z/\gamma^* \to e^+e^-$	$160.2 \pm 0.3 (\mathrm{stat}) \pm 3.7 (\mathrm{syst}) \pm 2.9 (\mathrm{lumi})$

Muons	$\sigma^{\mathrm{fid},\mu}_{W o\mu u}~[\mathrm{pb}]$
$W^+ \to \mu^+ \nu$	$2839 \pm 1 (\mathrm{stat}) \pm 17 (\mathrm{syst}) \pm 51 (\mathrm{lumi})$
$W^- \to \mu^- \bar{\nu}$	$1901 \pm 1 (\mathrm{stat}) \pm 11 (\mathrm{syst}) \pm 34 (\mathrm{lumi})$
	$\sigma^{\mathrm{fid},\mu}_{Z/\gamma^* o\mu\mu}~[\mathrm{pb}]$
$Z/\gamma^* \rightarrow \mu^+\mu^-$	$477.8 \pm 0.4 \text{ (stat)} \pm 2.0 \text{ (syst)} \pm 8.6 \text{ (lumi)}$

- Statistical uncertainties negligible
- Systematics ~1.8/0.6% (e/ μ) for W and 0.2/0.3% (ee/ $\mu\mu$) for Z fiducial x-sec
 - Plus 1.5-3% on acceptance for total x-sec
- 1.8% luminosity uncertainty dominates absolute fiducial cross-sections
 - Use normalised distribitions or ratios

Electron-muon universality

- BR for W \rightarrow e and W \rightarrow μ should be equal
 - E_{eW} and E_{uW} correct to same fiducial defⁿ

$$R_W = \frac{\sigma_{W \to e\nu}^{\text{fid},e}/E_W^{\text{e}}}{\sigma_{W \to \mu\nu}^{\text{fid},\mu}/E_W^{\mu}} = \frac{\sigma_{W \to e\nu}^{\text{fid}}}{\sigma_{W \to \mu\nu}^{\text{fid}}} = \frac{BR(W \to e\nu)}{BR(W \to \mu\nu)}$$

$$= 0.9967 \pm 0.0004 \text{ (stat)} \pm 0.0101 \text{ (syst)}$$

$$= 0.997 \pm 0.010.$$

Compare with other measurements

Measurement	R_W
ATLAS pp 7TeV	0.997±0.010
CDF pbar-p 1.96 TeV	1.018±0.025
LHCb pp	1.020±0.019
LEP2 W ⁺ W ⁻	1.007±0.019
au decays average	0.9964±0.0028
K decays NA62	1.0044 ± 0.0040
π decays	0.9992±0.0024

 $R_{W} = \sigma_{W^{\pm}}^{fid} \rightarrow e^{\pm_{V}} / \sigma_{W^{\pm}}^{fid} \rightarrow \mu^{\pm_{V}}$ 0. Data $R_W LEP e^+e^- \rightarrow W^+W^-$ 0.95 $R_7 LEP+SLD e^+e^- \rightarrow Z$ Standard Model 1.05 0.95 $R_Z = \sigma_{Z/\gamma^*}^{fid} \rightarrow e^+ e^- / \sigma_{Z/\gamma^*}^{fid} \rightarrow \mu^+ \mu^-$ Also $R_7 = 1.0026 \pm 0.0050$ Less precise than LEP/SLC:

 $R_7 = 0.9991 \pm 0.0028$

ATLAS

 $\sqrt{s} = 7 \text{ TeV}, 4.6 \text{ fb}^{-1}$

Electron-muon universality confirmed at <1% 29th August 2017 Richard Hawkings

Theoretical predictions and PDFs

- Calculations available at NNLO in QCD
 - DYNNLO and FEWZ codes, with additional NLO EW corrections (several % for Z)
- Large uncertainties from the proton PDFs

- Region 10⁻³<x<10⁻¹ relevant for central W and Z production with |y|<2
- Use 'global' PDF sets CT10/14, MSTW/MMHT, NNPDF2-3 from fits to DIS and collider data (Tevatron +LHC)
- LHC W/Z data adds to PDF knowledge
 - W+: ud~, us~, (cd~, cs~), opp. for for W-
 - Z: uu~, dd~, ss~ (cc~,bb~)

More on PDFs

• Industry of PDF fitting groups, with different input datasets and assumptions

	CT14	MMHT14	NNPDF3.0	HERAPDF2.0	ABM12(ABMP)	CJ12(15)	JR14	
HERA data	HERA I+ charm	HERA I charm jets	HERA I+ H1 and ZEUS II charm	HERA I+II	HERA I charm	HERA I	HERA I charm jets	
Fix. Target DIS	✓	✓	✓	×	✓	JLAB, high x ✓	JLAB, high x 🗸	
Tevatron W,Z	✓	✓	✓	×	×/√	✓	×	
Tevatron Jets	✓	✓	✓	×	×	×	✓	
Fix. Target DY	✓	✓	✓	×	✓	✓	✓	
LHC WZ	✓	✓	✓	×	✓	×	×	
LHC jets	✓	✓	✓	×	×	×	×	
LHC top	×	✓	✓	×	✓	×	×	
LHC charm	×	×	✓	×	×/√	×	×	
References	arXiv:1506.07443	arXiv:1412.3989	arXiv:1410.8849	arXiv:1506.06042	arXiv:1310.3059	arXiv:1212.1702	arXiv:1403.1852	

- HERA ep DIS data is the 'backbone' of all modern PDF sets, supplemented by various choices of fixed target DIS, Drell-Yan and jet data from Tevatron and LHC
- Groups also differ in data treatment (e.g. tensions between datasets), theory calculations used, parameterisation of PDFs vs x,Q², treatment of heavy quarks
- Important to consider uncertainties from a particular PDF set AND predictions of different PDF sets

Differences between PDF sets

- u, d and g: differences of 5-10% in range 10⁻³<x<10⁻¹, non-overlapping bands
 - Strange quark contribution less well-determined

V. Radescu, QCD@LHC 2016. APFEI

W and Z cross-section comparisons

- 2D plots of W⁺ vs W⁻ and W vs Z make expt. and pred. correlations clear
 - Most PDFs (in particular global sets) a little below the data for $\sigma(Z)$

W⁺/W⁻ and W/Z cross-section ratios

- Significant uncertainty cancellations in ratios of cross-sections
 - W⁺/W⁻ measured to 0.25%, W/Z to 0.5%, much smaller than PDF uncertainties
 - W/Z smaller than all predictions
 - Considerable spread in predictions and their uncertainties with different PDFs

Lepton rapidity distributions

- More information in the rapidity distributions sampling different x-values
 - Big difference in cross-section and shape between W⁺ and W⁻
 - More up than down quarks in the proton, with larger momentum fractions
 - Most 'global' PDF sets below the data for both W⁺ and W⁻ (±1.8% lumi not

W charge asymmetry

Another ratio measurement:

$$A_{\ell} = \frac{\mathrm{d}\sigma_{W+}/\mathrm{d}|\eta_{\ell}| - \mathrm{d}\sigma_{W-}/\mathrm{d}|\eta_{\ell}|}{\mathrm{d}\sigma_{W+}/\mathrm{d}|\eta_{\ell}| + \mathrm{d}\sigma_{W-}/\mathrm{d}|\eta_{\ell}|}$$

- Expt. uncertainties 0.5-1%/bin
- NNPDF 3.0 agrees particularly well
 - Already includes W data from CMS

PDF profiling using W and Z distributions

• Form a data vs. χ^2 across all bins of all rapidity-differential cross-sections

$$\chi^{2}(\vec{b}_{\text{exp}}, \vec{b}_{\text{th}}) = \sum_{i=1}^{N_{\text{data}}} \frac{\left[\sigma_{i}^{\text{exp}} - \sigma_{i}^{\text{th}}(1 - \sum_{j} \gamma_{ij}^{\text{exp}} b_{j, \text{exp}} - \sum_{k} \gamma_{ik}^{\text{th}} b_{k, \text{th}})\right]^{2}}{\Delta_{i}^{2}} + \sum_{j=1}^{N_{\text{exp.sys}}} b_{j, \text{exp}}^{2} + \sum_{k=1}^{N_{\text{th.sys}}} b_{k, \text{th}}^{2}$$

- γ_{ij}^{exp} express experimental uncertainties j via nuisance parameters $\beta_{j,exp}$
- γ_{ik}^{th} express theoretical (PDF and other) uncertainties k via nuisance parameters $\beta_{k,th}$
- β =±1 represents changes in results/predictions corresponding to ±1 σ uncertainties
- 'Profiled' values of $\beta_{k,th}$ after χ^2 minimisation represent 'improved' PDF
 - But only if the original distributions are reasonably close to data
- χ^2 results for fit to all ATLAS 7 TeV W/Z data (including | excluding PDF unc.)

Data set	n.d.f.	ABM12	CT14	MMHT14	NNPDF3.0	ATLAS-epWZ12
$W^+ \to \ell^+ \nu$	11	11 21	10 26	11 37	11 18	12 15
$W^- \to \ell^- \bar{\nu}$	11	12 20	8.9 27	8.1 31	12 19	7.8 17
$Z/\gamma^* \to \ell\ell \ (m_{\ell\ell} = 46 - 66 \ \text{GeV})$	6	17 21	11 30	18 24	21 22	28 36
$Z/\gamma^* \to \ell\ell \ (m_{\ell\ell} = 66 - 116 \text{ GeV})$	12	24 51	16 66	20 116	14 109	18 26
Forward $Z/\gamma^* \to \ell\ell \ (m_{\ell\ell} = 66 - 116 \text{ GeV})$	9	7.3 9.3	10 12	12 13	14 18	6.8 7.5
$Z/\gamma^* \to \ell\ell \ (m_{\ell\ell} = 116 - 150 \text{ GeV})$	6	6.1 6.6	6.3 6.1	5.9 6.6	6.1 8.8	6.7 6.6
Forward $Z/\gamma^* \to \ell\ell \ (m_{\ell\ell} = 116 - 150 \text{ GeV})$	6	4.2 3.9	5.1 4.3	5.6 4.6	5.1 5.0	3.6 3.5
Correlated χ^2		57 90	39 123	43 167	69 157	31 48
Total χ^2	61	136 222	103 290	118 396	147 351	113 159

CT14 best, MMHT and ATLAS epWZ OK, ABM12 and NNPDF3.0 less good

PDF profiling results

• Fitted $\beta_{k,th}$ can be used to generate new profiled PDF, reduced uncertainties

$$f_0' = f_0 + \sum_{k} \left[b_{k,\text{th}}^{\min} \left(\frac{f_k^+ - f_k^-}{2} \right) + \left(b_{k,\text{th}}^{\min} \right)^2 \left(\frac{f_k^+ + f_k^- - 2f_0}{2} \right)^2 \right]$$

- $f_0(f_0)$ original (new) central PDF, f_k^+ and f_k^- the \pm variations for PDF eigenvector k
- Effect of profiling on MMHT14 sea quarks increased s-quark contribution

Indicative, but not a substitute for full PDF fit with new data...
Richard Hawkings

Flavour composition of light-quark sea

- Full QCD analysis of W/Z data + HERA DIS data to fit a PDF from scratch
 - Computationally challenging MCFM NLO predictions + APPLGRID tools to

convolve PDF, fixed NLO→NNLO corrections

- Neutrino-nucleon scattering (νN→cμ) suggested strange sea < u/d sea
 - Included in most global PDF sets
- Ratio of W/Z production at LHC is sensitive to strange sea vs u/d sea

$$r_s = \frac{s + \bar{s}}{2\bar{d}}$$

$$r_s = 1.19 \pm 0.07 \text{ (exp)} ^{+0.13}_{-0.14} \text{ (mod + par + thy)}$$

- Result limited by modelling/theory
- Suggests no strange suppression

Summary of lecture 1

- Precision physics is possible at LHC
 - Can contribute to electroweak fit and other important SM parameters
- W/Z cross-section fiducial and differential cross-section measurements
 - Clean experimental signatures, Z provides 'in-situ' calibration for leptons
 - Absolute uncertainties (excluding luminosity) of ~1% for W, <0.5% for Z
 - Luminosity measurement reaches 2% precision at LHC
 - Benefitting from dedicated vdM scan campaigns (few days beamtime per year)
- W/Z measurements provide important constraints on PDFs
 - Previously mainly determined using DIS and jet data
 - Leading source of uncertainty in predicting the W/Z cross-sections
 - Constrain the u/d PDFs in 10⁻³<x<10⁻¹, unique information on strange quarks
- Next ... using W and Z to constrain electroweak parameters, physics with jets