
(Short introduction to) machine learning (3/3)

Diego Tonelli (INFN Trieste)

diego.tonelli@cern.ch

CERN-Fermilab HCP Summer School
CERN Aug 30, 2017

mailto:diego.tonelli@cern.ch

What?

2

Giving computers the ability to learn without explicitly programming them

Use statistics, mathematics, and computer science to determine mathematical
models, learned from data, that capture the patterns and relationships between
the features of the data.

Formulated around the 1950ies.

Currently rapidly evolving, driven by many relevant applications in language
processing, speech and handwritring recognition, vision, computer vision, fraud
detection, financial markets analysis, search engines, spam/virus detection,
medical diagnosis, robotics, automation, advertising, data science.

In HEP

3

First, pioneering applications appeared in the 90ies

Became more popular in the 2000’s (LEP/Tevatron) until today’s boom: classify
“signals” from “backgrounds” both online and offline, improve reconstruction of
heavy particles from incomplete decay products, etc..

The model

4

Central assumption: observed data are generated from the probabilistic
distribution p(x|m), the “model”, which is a mathematical description of the
system of interest. The model depends on the data and on what we want to
accomplish, e.g.:

Classification Regression Clustering

An approximation of the model is learned by using the information associated
with input data. It is then used to identify the relevant properties of the system
of interest and predict new data points.

Parametric vs non-parametric

5

Parametric models — fully specified by a number of
parameters that does not grow with the size of the
data set used to extract them. E.g, Gaussian
mixture models

Non-parametric models — may grow in complexity
with more data. E.g., a model that predicts the
location of a data point in the feature space using
the nearest known set of data points

Supervised learning

6

Define a model h(x⃗|w⃗) flexible enough to be able to adapt to the problem at hand (but
not more flexible than that)

Feed a set of “training” data x⃗t to the model so that it can “learn” (adjust its
parameters) for modeling any new data optimally [for the task]: give it N example
events, each associated with feature variables x⃗ and the label (or target) y. This is
the value of the quantity I want the model to predict — can be a class label (signal,
background or pion, kaon) or a real number (electron energy..).

During learning iterate over the training data by adjusting the model-parameters w
until a “distance” figure of merit that quantifies the difference of the model from the
truth reaches a sufficiently low value. Define h(x⃗) = y.

Test performance on an independent labeled sample

Supervised learning

7
[Kagan, Le Cun]

Unseupervised learning

8

As before, but labels are not known. The task is to find structure/pattern in the
data.

Clustering: partition data into subsets according to similarities in the feature
space

Dimensionality reduction: find a lower-
dimensional (simpler) representation of the
data

[Kagan]

What follows

9

In HEP, ML approaches have been mostly applied to classification: signal/
background, kaon/pion, photon/electron; quark-jet/gluon-jet, b-jet/ light-jet.
Typically supervised due to availability of simulated and control samples

With the LHC, applications to a broader set of tasks are becoming popular (e.g.,
reweight multidimensional distributions to match to each other)

Our general discussion will be mostly restricted to supervised binary classification

The classification task

10

In a sample of physics data, observe candidate “signal” events, contaminated by
“background” events. Each is associated to a set x⃗ of variables (or features or
predictors) e.g.,
x1 = transverse momentum

x2 = displacement from collision point

x3 = …

xn = …

The goal is to classify the events within the signal or background categories.

[Cowan]

x⃗ is distributed according to an n-dimensional joint
probability density p(x⃗|m), which differs for signal (H1)
and background candidates (H0).

Decision boundaries

11

Can do it with cuts

Or identify some sort of decision boundary

[Cowan]

[Cowan]

Decision boundaries

12

Can make y(x⃗) as a
scalar number and
determine it in a way
that its distributions for
the signal and
background samples are
maximally separated.

With such a
dimensionality reduction,
a “cut” on y(x⃗) offers a
decision boundary

Decision boundary — a function of the data that allows separation between
classes. Surface in the n-dimensional space of the features.

Data

Distribution of y(x)
under hypothesis H0

y(x)

Distribution of
y(x) under
hypothesis H1

Binary classification performance

13

Three classifiers separate “red” from “blue” classes of events.

Which one does it better?

Rogozhnikov

ROC

14

None: all have the same receiver operating characteristic (ROC) curve:
signal classification efficiency vs background misclassification efficiency.

wea
ke

r c
las

sifi
er

str
on

ge
r

cla
ss

ifie
r

Efficiency for backrgound

Effi
ci

en
cy

 fo
r s

ig
na

l

Standard measure of performance
for binary classifiers.

Each point in the curve
corresponds to a threshold in the
classifier output.

Get as much top right as possible.

Is there any optimal variable that,
given the information in data, allows
separating two classes of events
with minimum false positive rate at
given true positive rate?

Yes

15

Region W: if data fall here we accept
H0; probability under H0 is 1-α

Region Wc: if data fall there we
reject H0; probability under H0
is α

[Cranmer]

Neyman-Pearson Lemma — remember?

16

The optimal variable exist and it is the likelihood ratio

For any false positive rate (i.e., misclassification of true background events), the
region W of acceptance of H0, which minimizes the probability to accept H0
when H1 (or, to classify as background a true signal event) is true, is a contour
(a cut, in 1D) of the likelihood ratio.

p(x|H1

p(x|H0)
> k↵

Therefore the optimal decision boundary is (where x can be multidimensional)

(or any monotonic function of it)

Problem

17

Rarely the densities p(x⃗|H1) and p(x⃗|H0) that are needed to evaluate the likelihood
ratio for each event are known.

Most of the supervised machine-learning classification task boils down to use
the data to find the best approximation of the likelihood ratio

Guessing the density

18

Simple guess: assume y to be a linear
function of the features

and find the coefficients wi that
maximize the separation between the
distributions of y(x) on signal and
background events:

Fisher’s discriminant

19

[Cowan]

Fisher’s discriminant

20

[Cowan]

Fisher’s discriminant

21

The resulting weights define the linear
decision boundary such that the projection
of the points along the tangent of the
boundary produces maximally separated
distributions.

[Cowan]

Fisher’s discriminant

22

Suboptimal separation Fisher discriminant

Fisher’s discriminant

23

For Gaussian data with equal covariance the Fisher discriminant offers the
optimal decision boundary.

The Fisher’s discriminant is a monotonic function of the likelihood ratio and is
therefore optimal (for Gaussian data with equal covariance)

[Cowan]

Limitations of linear boundaries

24

A linear decision boundary is optimal when the
classes of events to be separated are
distributed as multivariate Gaussians with same
covariance and differing mean

When data are non-Gaussian, linear decision
boundaries can fail.

[Cowan]

Limitations of linear boundaries

25

Occasionally in simple problems, a nonlinear transformation that maps the
feature space into variables that are more likely to be linearly separable is
evident

x1…..xn ==> ϕ₁(x⃗)…ϕn(x⃗)

x1, x2 ϕ₁(x1, x2) = tan-1(x2/x1)

ϕ2(x1, x2) = (x12 + x22)1/2

In general, the functions of the feature space ϕ⃗(x⃗,w⃗) depend also on free
parameters w⃗.

[Cowan]

Nonlinear discriminants

26

In general, the set of basis functions in the feature space that allows/optimizes
the classification is not evident.

A number of approaches offer algorithms to identify and parametrize such basis
functions to offer effective classification.

Among the most commonly used nonlinear discriminants in HEP are artificial
neural networks (some similarities with neuronal functionality)

Used in HEP since the early 80’s — quite some time after the initial works by
McCulloch and Pitts (1943) and Rosenblatt (1962).

Artificial Neural Networks

27

Define a number of input “nodes” (driven by the
dimensionality of feature space x⃗) and an output y(x⃗).
i.e., a scalar variable where a single cut defines a
decision boundary.

Choose a number (1 to few) of intermediate “hidden”
layers. In each, choose a number of nodes.
More layers/nodes imply more model parameters (N).

Each node connects to the downstream nodes. The
intensities of the connections are tunable weights w

Choose a monotonic nonlinear function that expresses
the “excitation” of each node in response to input from
the upstream nodes (e.g., h(s) = 1/ (1+ e-s)

Artificial Neural Networks

28

When the ANN receives some input data, in each node, the weighted inputs
incoming from the preceding nodes are fed to the activation function, which
outputs to the resulting activation intensity to the following nodes.

The classification performance depends on the value of the weights. These are
optimized during the training phase.

Training

29

Before the ANN can classify unknown events, the ANN is fed events of known
classification (simulation, typically) so that the it can “learn”. Each event “a” comes
with its set of features x⃗a = (x1…..xn) and its true class ta = 0 or 1.

The set of optimal weights w is obtained by minimizing an error function that
quantifies how much the classification achieved by the ANN departs from the true
classification (known for the training sample). Error-function example

Minimizing E(w) over the space of weights to obtains their optimal values

Gradient descent

30

The error function is minimized numerically, e.g., by using the gradient descent
method: start from an initial guess (or random choice) and make a step in the
direction of maximum decrease.

Update w for each training event a.

minimum

[Kagan]

[Cowan]

Error backpropagation: determines the derivatives needed to calculate the gradient
directions at each node using a recursive rule.

31

Overtraining
The number of inputs and inner nodes should be optimized for the problem .

Too many nodes (i.e., free parameters) yield outputs
conforming too closely the training data.

Overtraining: decision boundary follows the details of the
statistical fluctuations yielding an unrealistically small error
rate on the training data.

Evaluate classification performance on a independent
validation sample. Different behavior of the error function vs
training cycle between the training sample and a validation
sample indicates the onset of overtraining.

After the ANN architecture is optimized, the expected
performance should be evaluated in a test sample (other
than the training and validation samples).

E(w)

Training cycle

[Cowan]

training sample

validation sample

32

Bias-variance tradeoff
At given training sample size, the higher the ANN complexity (more hidden layers,
more nodes) the larger the statistical errors of the ANN parameters, since
information from the same data is used to determine a larger number of
parameters. This yields overtraining and high variance.

However, with the too few nodes, the ANN struggles to expoit the nonlinearities,
yielding bias.

Too many model
parameters: large variance

[Cowan]Too few model parameters:
large bias Tradeoff

33

Bias-variance tradeoff
[Kagan]Evaluate the generalization

error of your procedure by
splitting data set in three
samples:

1 training sample: fit values
of model parameters

2. validation sample: check
performance on independent
data and optimize it by
tuning # of parameters

3. Test sample final
evaluation of performance,
with all parameters fixed

Generalization error

Regularization

One approach for avoiding overfitting/overtraining is to incorporate in the cost
function a penalty for large weights.

Increasing the regularization parameter λ drives the weights to zero, thus
effectively reducing the number of nodes unless they are consistently
supported by the training data

Advanced usages — adversarial networks
Make the classifier output less sensitve to
systematic effects or less biasing toward
variables that may need to be fit
downstream in the analysis.

Similar techniques been applied to
decision trees (more later)

Discriminating function for various values of ν

Universal approximation theorem

A feed-forward multilayer perceptron with a single hidden layer and a finite
number of nodes activated through any continuous nonpolynomial function can
approximate arbitrarily well any continuous function

(Says nothing on how many nodes we need or how many data…)

Universal approximation theorem

[Kagan]

Advanced usages — convolutional networks

Promising for the analysis of LAr time-projection chamber “event pictures” from
current and future neutrino experiments

[Kato]

Advanced usages — convolutional networks

Promising for the analysis of LAr time-projection chamber “event pictures”
produced in current and future neutrino experiments

[Kato]

Decision trees

Algorithms that subdivide the space of the input
variables (features) into a number of simple
nonoverlapping regions (n-dimensional rectangles).

Each region will be labeled as “signal region” or
“background region” according to the predominant
category of training events that populate it after
training.

Such labels are used to classify the test events.

Decision trees

Subdivision of feature-space corresponds to a set
of splitting rules.

Represent through an (inverted) tree-like structure
made of a cascade of decision nodes, each
associated to an input variable

Each node tests a single feature of the event at a
time (e.g., cuts on a single variable) and routes the
event on one of its downstream branches.
partitioning the sample into subsamples of
increasing purity until the final classification is
reached (events accumulated in the terminal
nodes (leafs).

Trees vs linear models

Building the tree —how the subregions are chosen

Recursive binary splitting.

At each building step, choose the input variable and the cut threshold on it that
minimizes a cost function.

Misclassification rate, the fraction of events of the training sample in that region
that do not belong to the most common class (not really used)

Typically use cross enthropy or functions of it (Gini)

Building the tree —how the subregions are chosen

Repeat the process of choosing the variable and cut value that minimizes the cost
but do it restricting to one of the two regions previously identified.

Without a stopping criterion, the training sample could end up being exactly
classified, leading to strong overtraining. Typically impose stopping criteria like
minimum number of entries in a node or achieved purity.

Still decision trees can grow very large and pruning is applied. For instance
terminal leaves are recombined if their purity is compatible within statistical
uncertainties.

Instabilities
[Rogozhnikov]Tree keeps splitting until each event is correctly classified

Instabilities
[Rogozhnikov]

47

Improving trees

Typically classification performance of decision trees is not competitive with that
from other machine-learning approaches.

By aggregating multiple decision trees, the classification performances is
improved.

Combination of several weak learners with high variance goes a long way

48

Improving trees - bagging/boosting

Generate N nearly independent training samples by resampling a single training
sample. Build a tree based on each of the resampled training samples. For each
test point in feature space, look at the classification of the N trees, and define the
classification output of the tree as the most common output among the N trees
(bagging)

Train N trees in sequence, giving in each more weight to the training examples
misclassified in the previous tree. Take the weighted vote of the outputs to classify
the examples. (boosting)

(not specific of decision trees, can be applied to other machine-learning methods).

49

Improving trees - random forests

Tweak the bagging algorithm decorrelates better the trees obtained by the
resampled training data.

When considering a split in the building step, only a random subset of the
whole set of features is available for choose the splitting-variable.
This “forces” the trees to develop differently thus reducing correlations among
them and therefore the variance of the bagged trees

E.g, if one feature is much more discriminating than all others. A split based
such feature would likely to be at the top of most the trees derived from the
resampled training data. Such trees will therefore be similar and yield strongly
cotrrelated outputs strongly. Since correlations do not reduce by averaging, the
advantages of bagging will be lost.

50

Practical advice

[Kagan]

51

No free lunch theorem

Many ML methods and tools out there to improve our reach in HEP-specific
problems: linear, nearest neighbor, ANN, DeepNN, DT ensembles, support
vector machines…

With no prior knowledge, general statements on performance are hard.
Performance very much dependent on the details of the problem at hand.

The only shortcut to your trial and error is if your problem mirrors a similar
problem somebody else has already explored.

52

Empirical heuristics [Kagan]

53

Thanks for your attention
and your questions

Further readings - books

54

G. Cowan,“Statistical
data analysis”

F. James, “Statistical Methods in
Experimental Physics, data analysis”

G. Casella, R. Berger,
“Statistical Inference

A. Stuart, et al “Kendall’s Advanced
Theory of Statistics Vol 2A”

PDF and slides: www-bcf.usc.edu/~gareth/ISL/

T. Hastie et al., “An Introduction
to Statistical learning”

T. Hastie et al., “The elements
of statistical learning”
https://web.stanford.edu/~hastie/ElemStatLearn/

C. Bishop “Pattern recognition
and machine learning”

55

Further readings — slides/docs
• Statistics@ http://hcpss.web.cern.ch/hcpss/ (Excellent lectures by K. Cranmer, G. Cowan, B. Cousins et al.)

• Lectures from Glen Cowan’s page https://www.pp.rhul.ac.uk/~cowan/

• Terascale Stat School (especially 2015 F. James’ lectures) https://indico.desy.de/conferenceDisplay.py?confId=11244

• T. Junk’s lectures from www-cdf.fnal.gov/~trj/

• L. Lyons lectures: https://indico.cern.ch/event/431038/

• Notes from CDF’s Statistics Committee public page https://www-cdf.fnal.gov/physics/statistics/

• B. Cousins’ stuff: try to find his (CMS restricted) “Statistics in Theory - prelude to Statistics in Practice” lectures. Look
at his statistics papers on inspire and the references he reccommends.

• Proceedings/docs from the PHYSTAT conferences and workshops, linked from phystat.org

• IML material (https://indico.cern.ch/category/8009/ and recent HEP-relevant resources linked from https://
github.com/iml-wg/HEP-ML-Resources#lectures.

http://hcpss.web.cern.ch/hcpss/
https://www.pp.rhul.ac.uk/~cowan/
https://indico.desy.de/conferenceDisplay.py?confId=11244
http://www-cdf.fnal.gov/~trj/
https://www-cdf.fnal.gov/physics/statistics/
https://indico.cern.ch/category/8009/
https://github.com/iml-wg/HEP-ML-Resources#lectures
https://github.com/iml-wg/HEP-ML-Resources#lectures
https://github.com/iml-wg/HEP-ML-Resources#lectures
https://github.com/iml-wg/HEP-ML-Resources#lectures

