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What?
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Giving computers the ability to learn without explicitly programming them


Use statistics, mathematics, and computer science to determine mathematical 
models, learned from data, that capture the patterns and relationships between 
the features of the data.


Formulated around the 1950ies. 


Currently rapidly evolving, driven by many relevant applications in language 
processing, speech and handwritring recognition, vision, computer vision, fraud 
detection, financial markets analysis, search engines, spam/virus detection, 
medical diagnosis, robotics, automation, advertising, data science. 



In HEP
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First, pioneering applications appeared in the 90ies


Became more popular in the 2000’s (LEP/Tevatron) until today’s boom: classify 
“signals” from “backgrounds” both online and offline, improve reconstruction of 
heavy particles from incomplete decay products, etc..



The model 
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Central assumption: observed data are generated from the probabilistic 
distribution p(x|m), the “model”, which is a mathematical description of the 
system of interest. The model depends on the data and on what we want to 
accomplish, e.g.:

Classification Regression Clustering

An approximation of the model is learned by using the information associated 
with input data. It is then used to identify the relevant properties of the system 
of interest and predict new data points. 



Parametric vs non-parametric
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Parametric models — fully specified by a number of 
parameters that does not grow with the size of the 
data set used to extract them. E.g, Gaussian 
mixture models


Non-parametric models — may grow in complexity 
with more data. E.g., a model that predicts the 
location of a data point in the feature space using 
the nearest known set of data points



Supervised learning
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Define a model h(x⃗|w⃗) flexible enough to be able to adapt to the problem at hand (but 
not more flexible than that)


Feed a set of “training” data x⃗t  to the model so that it can “learn” (adjust its 
parameters) for modeling any new data optimally [for the task]: give it N example 
events, each associated with feature variables x⃗ and the label (or target) y.  This is 
the value of the quantity I want the model to predict — can be a class label (signal, 
background or pion, kaon) or a real number (electron energy..). 


During learning iterate over the training data by adjusting the model-parameters w 
until a “distance” figure of merit that quantifies the difference of the model from the 
truth reaches a sufficiently low value. Define h(x⃗) = y.


Test performance on an independent labeled sample



Supervised learning
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[Kagan, Le Cun]



Unseupervised learning
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As before, but labels are not known. The task is to find structure/pattern in the 
data.


Clustering: partition data into subsets according to similarities in the feature 
space

Dimensionality reduction: find a lower-
dimensional (simpler) representation of the 
data

[Kagan]



What follows
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In HEP, ML approaches have been mostly applied to classification: signal/
background, kaon/pion, photon/electron; quark-jet/gluon-jet, b-jet/ light-jet. 
Typically supervised due to availability of simulated and control samples


With the LHC, applications to a broader set of tasks are becoming popular (e.g., 
reweight multidimensional distributions to match to each other)


Our general discussion will be mostly restricted to supervised binary classification



The classification task
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In a sample of physics data, observe candidate “signal” events, contaminated by 
“background” events.  Each is associated to a set x⃗  of variables (or features or 
predictors) e.g., 
x1 = transverse momentum


x2 = displacement from collision point


x3 = …


xn = …

The goal is to classify the events within the signal or background categories. 

[Cowan]

x⃗ is distributed according to an n-dimensional joint 
probability density p(x⃗|m), which differs for signal (H1) 
and background candidates (H0).        



Decision boundaries

11

Can do it with cuts

Or identify some sort of decision boundary

[Cowan]

[Cowan]



Decision boundaries
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Can make y(x⃗) as a 
scalar number and 
determine it in a way 
that its distributions for 
the signal and 
background samples are 
maximally separated.


With such a 
dimensionality reduction, 
a “cut” on y(x⃗) offers a 
decision boundary

Decision boundary  —  a function of the data that allows separation between 
classes. Surface in the n-dimensional space of the features.

Data

Distribution of y(x) 
under hypothesis H0

y(x)

Distribution of 
y(x) under 
hypothesis H1



Binary classification performance
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Three classifiers separate “red” from “blue” classes of events.


Which one does it better?

Rogozhnikov



ROC
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None: all have the same receiver operating characteristic (ROC) curve:            
signal classification efficiency vs background misclassification efficiency.
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Standard measure of performance 
for binary classifiers.


Each point in the curve 
corresponds to a threshold in the 
classifier output. 


Get as much top right as possible. 


Is there any optimal variable that, 
given the information in data, allows 
separating two classes of events 
with minimum false positive rate at 
given true positive rate?



Yes
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Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α

[Cranmer]



Neyman-Pearson Lemma — remember?
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The optimal variable exist and it is the likelihood ratio


For any false positive rate (i.e., misclassification of true background events), the 
region W of acceptance of H0, which minimizes the probability to accept H0 
when H1 (or, to classify as background a true signal event) is true, is a contour 
(a cut, in 1D) of the likelihood ratio.

p(x|H1

p(x|H0)
> k↵

Therefore the optimal decision boundary is (where x can be multidimensional)

(or any monotonic function of it)



Problem
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Rarely the densities p(x⃗|H1) and p(x⃗|H0) that are needed to evaluate the likelihood 
ratio for each event are known. 


Most of the supervised machine-learning classification task boils down to use 
the data to find the best approximation of the likelihood ratio



Guessing the density
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Simple guess: assume y to be a linear 
function of the features


and find the coefficients wi that 
maximize the separation between the 
distributions of y(x) on signal and 
background events:



Fisher’s discriminant
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[Cowan]



Fisher’s discriminant
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[Cowan]



Fisher’s discriminant
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The resulting weights define the linear 
decision boundary such that the projection 
of the points along the tangent of the 
boundary produces maximally separated 
distributions.

[Cowan]



Fisher’s discriminant
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Suboptimal separation Fisher discriminant



Fisher’s discriminant
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For Gaussian data with equal covariance the Fisher discriminant offers the 
optimal decision boundary.


The Fisher’s discriminant is a monotonic function of the likelihood ratio and is 
therefore optimal (for Gaussian data with equal covariance)

[Cowan]



Limitations of linear boundaries
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A linear decision boundary is optimal when the 
classes of events to be separated are 
distributed as multivariate Gaussians with same 
covariance and differing mean


When data are non-Gaussian, linear decision 
boundaries can fail.

[Cowan]



Limitations of linear boundaries
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Occasionally in simple problems, a nonlinear transformation that maps the 
feature space into variables that are more likely to be linearly separable is 
evident 

x1…..xn   ==> ϕ₁(x⃗)…ϕn(x⃗)

x1, x2 ϕ₁(x1, x2) = tan-1(x2/x1)


ϕ2(x1, x2) = (x12 + x22)1/2


In general, the functions of the feature space ϕ⃗(x⃗,w⃗) depend also on free 
parameters w⃗.


[Cowan]



Nonlinear discriminants
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In general, the set of basis functions in the feature space that allows/optimizes 
the classification is not evident.


A number of approaches offer algorithms to identify and parametrize such basis 
functions to offer effective classification.


Among the most commonly used nonlinear discriminants in HEP are artificial 
neural networks (some similarities with neuronal functionality)


Used in HEP since the early 80’s — quite some time after the initial works by 
McCulloch and Pitts (1943) and Rosenblatt (1962).



Artificial Neural Networks
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Define a number of input “nodes” (driven by the 
dimensionality of feature space x⃗)  and an output y(x⃗). 
i.e., a scalar variable where a single cut defines a 
decision boundary.


Choose a number (1 to few) of intermediate “hidden” 
layers. In each, choose a number of nodes.                   
More layers/nodes imply more model parameters (N). 


Each node connects to the downstream nodes. The 
intensities of the connections are tunable weights w


Choose a monotonic nonlinear function that expresses  
the “excitation” of each node in response to input from 
the upstream nodes (e.g., h(s) =  1/ (1+ e-s)



Artificial Neural Networks
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When the ANN receives some input data, in each node, the weighted inputs 
incoming from the preceding nodes are fed to the activation function, which 
outputs to the resulting activation intensity to the following nodes.


The classification performance depends on the value of the weights. These are 
optimized during the training phase.



Training
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Before the ANN can classify unknown events, the ANN is fed events of known 
classification (simulation, typically) so that the it can “learn”. Each event “a” comes 
with its set of features x⃗a = (x1…..xn) and its true class ta  = 0 or 1.


The set of optimal weights w is obtained by minimizing an error function that 
quantifies how much the classification achieved by the ANN departs from the true 
classification (known for the training sample). Error-function example

Minimizing E(w) over the space of weights to obtains their optimal values 



Gradient descent
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The error function is minimized numerically, e.g., by using the gradient descent 
method: start from an initial guess (or random choice) and make a step in the 
direction of maximum decrease.


Update w for each training event a.

minimum 

[Kagan]

[Cowan]

Error backpropagation: determines the derivatives needed to calculate the gradient 
directions at each node using a recursive rule.
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Overtraining
The number of inputs and inner nodes should be optimized for the problem .


Too many nodes (i.e., free parameters) yield outputs 
conforming too closely the training data. 


Overtraining: decision boundary follows the details of the 
statistical fluctuations yielding an unrealistically small error 
rate on the training data.


Evaluate classification performance on a independent 
validation sample. Different behavior of the error function vs 
training cycle between the training sample and a validation 
sample indicates the onset of overtraining. 


After the ANN architecture is optimized, the expected 
performance should be evaluated in a test sample (other 
than the training and validation samples).

E(w)

Training cycle

[Cowan]

training sample

validation sample
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Bias-variance tradeoff
At given training sample size, the higher the ANN complexity (more hidden layers, 
more nodes) the larger the statistical errors of the ANN parameters, since 
information from the same data is used to determine a larger number of 
parameters. This yields overtraining and high variance. 


However, with the too few nodes, the ANN struggles to expoit the nonlinearities, 
yielding bias.

Too many model 
parameters: large variance

[Cowan]Too few model parameters: 
large bias Tradeoff



33

Bias-variance tradeoff
[Kagan]Evaluate the generalization 

error of your procedure by 
splitting data set in three 
samples: 


1 training sample: fit values 
of model parameters


2. validation sample: check 
performance on independent 
data and optimize it by 
tuning # of parameters


3. Test sample final 
evaluation of performance, 
with all parameters fixed

Generalization error



Regularization

One approach for avoiding overfitting/overtraining is to incorporate in the cost 
function a penalty for large weights.


Increasing the regularization parameter λ drives the weights to zero,  thus 
effectively reducing the number of nodes unless they are consistently 
supported by the training data



Advanced usages — adversarial networks
Make the classifier output less sensitve to  
systematic effects or less biasing toward  
variables that may need to be fit 
downstream in the analysis.


Similar techniques been applied to 
decision trees (more later)

Discriminating function for various values of ν



Universal approximation theorem

A feed-forward multilayer perceptron with a single hidden layer and a finite 
number of nodes activated through any continuous nonpolynomial function can 
approximate arbitrarily well any continuous function


(Says nothing on how many nodes we need or how many data…)



Universal approximation theorem

[Kagan]



Advanced usages — convolutional networks 

Promising for the analysis of LAr time-projection chamber “event pictures” from 
current and future neutrino experiments 


[Kato]



Advanced usages — convolutional networks 

Promising for the analysis of LAr time-projection chamber “event pictures” 
produced in current and future neutrino experiments 


[Kato]



Decision trees

Algorithms that subdivide the space of the input 
variables (features) into a number of simple 
nonoverlapping regions (n-dimensional rectangles). 


Each region will be labeled as “signal region” or 
“background region” according to the predominant 
category of training events that populate it after 
training. 


Such labels are used to classify the test events.



Decision trees

Subdivision of feature-space corresponds to a set 
of splitting rules.


Represent through an (inverted) tree-like structure 
made of a cascade of decision nodes, each 
associated to an input variable


Each node tests a single feature of the event at a 
time (e.g., cuts on a single variable) and routes the 
event on one of its downstream branches.  
partitioning the sample into subsamples of 
increasing purity until the final classification is 
reached (events accumulated in the terminal 
nodes (leafs). 



Trees vs linear models



Building the tree —how the subregions are chosen

Recursive binary splitting.


At each building step, choose the input variable and the cut threshold on it that 
minimizes a cost function. 


Misclassification rate, the fraction of events of the training sample in that region 
that do not belong to the  most common class (not really used)


Typically use cross enthropy                                                or functions of it (Gini)



Building the tree —how the subregions are chosen

Repeat the process of choosing the variable and cut value that minimizes the cost 
but do it restricting to one of the two regions previously identified.


Without a stopping criterion, the training sample could end up being exactly 
classified, leading to strong overtraining. Typically impose stopping criteria like 
minimum number of entries in a node or achieved purity.


Still decision trees can grow very large and pruning is applied. For instance 
terminal leaves are recombined if their purity is compatible within statistical  
uncertainties.



Instabilities
[Rogozhnikov]Tree keeps splitting until each event is correctly classified




Instabilities
[Rogozhnikov]
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Improving trees

Typically classification performance of decision trees is not competitive with that 
from other machine-learning approaches.  


By aggregating multiple decision trees, the classification performances is  
improved. 


Combination of several weak learners with high variance goes a long way
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Improving trees - bagging/boosting

Generate N nearly independent training samples by resampling a single training 
sample. Build a tree based on each of the resampled training samples. For each 
test point in feature space, look at the classification of the N trees, and define the 
classification output of the tree as the most common output among the N trees 
(bagging)


Train N trees in sequence, giving in each more weight to the training examples 
misclassified in the previous tree. Take the weighted vote of the outputs to classify 
the examples. (boosting)


(not specific of decision trees, can be applied to other machine-learning methods).
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Improving trees - random forests

Tweak the bagging algorithm decorrelates better the trees obtained by the 
resampled training data.


When considering a split in the building step, only a random subset of the 
whole set of features is available for choose the splitting-variable.                         
This “forces” the trees to develop differently thus reducing correlations among 
them and therefore the variance of the bagged trees


E.g, if one feature is much more discriminating than all others. A split based 
such feature would likely to be at the top of most the trees derived from the 
resampled training data. Such trees will therefore be similar and yield strongly 
cotrrelated outputs strongly. Since correlations do not reduce by averaging, the 
advantages of bagging will be lost.
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Practical advice

[Kagan]



51

No free lunch theorem

Many ML methods and tools out there to improve our reach in HEP-specific 
problems: linear, nearest neighbor, ANN, DeepNN, DT ensembles,  support 
vector machines…


With no prior knowledge, general statements on performance are hard. 
Performance very much dependent on the details of the problem at hand. 


The only shortcut to your trial and error is if your problem mirrors a similar 
problem somebody else has already explored.
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Empirical heuristics [Kagan]
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Thanks for your attention 
and your questions



Further readings - books
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G. Cowan,“Statistical 
data analysis”

F. James, “Statistical Methods in 
Experimental Physics, data analysis”

G. Casella, R. Berger, 
“Statistical Inference

A. Stuart, et al “Kendall’s Advanced 
Theory of Statistics Vol 2A”

PDF and slides: www-bcf.usc.edu/~gareth/ISL/

T. Hastie et al., “An Introduction 
to Statistical learning”

T. Hastie et al., “The elements 
of statistical learning”
https://web.stanford.edu/~hastie/ElemStatLearn/

C. Bishop “Pattern recognition 
and machine learning”
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Further readings — slides/docs
• Statistics@ http://hcpss.web.cern.ch/hcpss/  (Excellent lectures by K. Cranmer, G. Cowan, B. Cousins et al.)


• Lectures from Glen Cowan’s page https://www.pp.rhul.ac.uk/~cowan/


• Terascale Stat School (especially 2015 F. James’ lectures) https://indico.desy.de/conferenceDisplay.py?confId=11244


• T. Junk’s lectures from www-cdf.fnal.gov/~trj/


• L. Lyons lectures: https://indico.cern.ch/event/431038/


• Notes from CDF’s Statistics Committee public page https://www-cdf.fnal.gov/physics/statistics/


• B. Cousins’ stuff: try to find his (CMS restricted) “Statistics in Theory - prelude to Statistics in Practice” lectures. Look  
at his statistics papers on inspire and the references he reccommends.


• Proceedings/docs from the PHYSTAT conferences and workshops, linked from phystat.org


• IML material (https://indico.cern.ch/category/8009/ and recent HEP-relevant resources linked from https://
github.com/iml-wg/HEP-ML-Resources#lectures.

http://hcpss.web.cern.ch/hcpss/
https://www.pp.rhul.ac.uk/~cowan/
https://indico.desy.de/conferenceDisplay.py?confId=11244
http://www-cdf.fnal.gov/~trj/
https://www-cdf.fnal.gov/physics/statistics/
https://indico.cern.ch/category/8009/
https://github.com/iml-wg/HEP-ML-Resources#lectures
https://github.com/iml-wg/HEP-ML-Resources#lectures
https://github.com/iml-wg/HEP-ML-Resources#lectures
https://github.com/iml-wg/HEP-ML-Resources#lectures

