BEYOND THE STANDARD MODEL

Lecture II

Jessie Shelton

U. Illinois, Urbana-Champaign

Hadron Collider Physics Summer School August 31, 2017, CERN

- Natural expectation for scalar fields: $m_s \sim \Lambda$
- natural EWSB needs new physics near TeV

• but this new physics must be special: theory above Λ must be free of quadratic divergences

Idea 1: cancellation of quadratic divergences

new physics closely related to SM:

- Complete solution: cancellation must be exact
 - This requires a lot of new states!
 - symmetry to relate couplings of NP to those of the SM
 - e.g.: SUSY
 - If there is no symmetry, then cancellation is accidental and will break down at higher scales: defers hierarchy problem

■ Idea 2: get rid of the problematic operator

Analogy: QCD

- In these models the Higgs is a composite state
- Generically we would expect $m_h \sim \Lambda_G$, but then:
 - we should generically have many new degrees of freedom at the same scale as the Higgs (again, compare QCD).
 - expect sizeable deviations in Higgs couplings from (very successful) SM predictions
 - \Rightarrow experimentally, require little hierarchy: $m_h \ll \Lambda_G$
 - How to get an anomalously light scalar? pseudo-Goldstone bosons

Higgs coupling measurements are a robust and modelindependent way to search for signs of compositeness:

parametrization of couplings relative to SM: expect

$$\kappa_i \sim \left(\frac{v}{f}\right)^2$$

Idea 3: no running

$$m_h$$
 M_{pl}

- apparent weakness of gravity compared to SM forces is an illusion due to geometry of spacetime
 - SM particles are inherently 4D (string theory makes this plausible)

- Other ideas aim to explain, not solve, hierarchy problem
 - anthropics: fine-tuning is real! We see the value of m_h that we do because something about the observed value favors the development of galaxies, planets, etc.
 - relaxion: fine-tuning is real, but dynamics in the early universe actively select a vacuum with weak-scale m_h

- Today I am going to focus on SUSY
 - Many consequences of SUSY as applied to the hierarchy problem are qualitatively similar to those of other models
 - partner particles for SM
 - parity symmetry leading to dark matter candidates (MET)
 - collider searches for heavy states with SM charges
 - SUSY is an excellent signature generator, especially when including variants on standard MSSM (*R*-parity violation, extended matter content, ...)

SUPERSYMMETRY

■ Theory of 1 complex scalar + 1 Weyl fermion:

$$\mathcal{L} = \partial_{\mu}\phi \,\partial^{\mu}\phi^* + i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi$$

invariant under supersymmetry transformation:

$$\delta\phi = \bar{\epsilon}\psi \qquad \qquad \delta\psi = -i\epsilon\gamma^{\mu}\partial_{\mu}\phi$$

two SUSY variations yield a translation:

$$[\delta_1, \delta_2] \phi = -i\bar{\epsilon}_2 \gamma^{\mu} \epsilon_1 \partial_{\mu} \phi$$

recall $\delta \phi = a^{\mu} \partial_{\mu} \phi$: generated by momentum

SUPERSYMMETRY

- SUSY is thus inherently intertwined with spacetime (Poincare) symmetry
 - SUSY: a statement about background spacetime
 - we can't pick and choose a subsector of the universe to supersymmetrize
 - the kinds of representations of SUSY that we can have depend on particle's Lorentz quantum numbers, in particular, on their spin.

SUPERSYMMETRY

Multiplets:

 $SU(2)_L$

 $SU(3)_c$

- supermultiplets: particle and superpartner
 - fermion sfermion (\tilde{u}_L, u_L)
 - lacksquare gauge boson gaugino (\tilde{B}, B_{μ})
 - Higgs boson higgsino (H_u, \tilde{H}_u)

chiral multiplets

vector multiplets

- Supersymmetry restricts possible interactions
 - Analogy: EWSB
 - Below scale of EWSB, u_R , u_L seem to have quantum numbers allowing Dirac mass term: $m_u u_R u_L$
 - But forbidden under underlying $SU(2)_L \times U(1)_Y$ need $\frac{y_u v}{\sqrt{2}} u_R u_L$
 - from the parent interaction $y_u H u_R Q_L$
 - which also yields the interaction $\frac{y_u}{\sqrt{2}} h u_R u_L$

- SUSY relates Yukawa interactions HQ_Lu_R to quartic scalar couplings $|H|^2|\tilde{Q}_L|^2$, ...
- useful compact formalism: superpotential

$$W=y_uQ_LHu_R+\dots$$
 renormalizable interactions are cubic

determines all supersymmetric interactions between chiral multiplets:

$$\mathcal{L}_{Yuk} = -W_{ij}\psi_i\psi_j \qquad V(\phi) = |W_i|^2$$

■ Thus one cubic superpotential term yQ_LHu_R encodes

SM Yukawas:

$$\mathcal{L}_{SM} = y_d Q_L H d_R + y_\ell L_L H e_R + y_u Q_L H^c u_R$$

- But only superfields, not their complex conjugates, can appear in
 W: cannot be supersymmetrized
- Must introduce two Higgs doublets H_u , H_d
 - also fixes up quantum consistency of MSSM: anomaly cancellation
- SUSY quadratic Higgs potential terms from $W = \mu H_u H_d$

- What about gauge interactions?
 - Gauge invariance uniquely dictates interactions of gauge bosons with charged particles
 - SUSY relates these to gaugino interactions and new scalar quartics,

$$\mathcal{L}_{new} = -\sqrt{2}g(\phi^*t^a\psi)\lambda^a + H.c. - \frac{g^2}{2}(\phi^*t^a\phi)^2$$

$$\tilde{g} \qquad \qquad \qquad \downarrow^{t_L} \qquad \qquad H_u \qquad \qquad H_u$$

SUPERSYMMETRIC MSSM

■ This gives us the SUSY-preserving part of the MSSM:

particles	sparticles
$\left(egin{array}{c} u_L \ d_L \end{array} ight) \; u_R \; \; d_R$	$\left(egin{array}{c} ilde{u}_L \ ilde{d}_L \end{array} ight) ilde{u}_R ilde{d}_R$
$\left(egin{array}{c} u_L \\ e_L \end{array} ight) \ e_R \ \ u_R$	$\left(egin{array}{c} ilde{ u}_L \ ilde{e}_L \end{array} ight) ilde{e}_R ilde{ u}_R $
H_u H_d	$ ilde{H}_u$ $ ilde{H}_d$
g_{μ}^{a} W_{μ}^{a} B_{μ}	$ ilde{g}^a$ $ ilde{W}^a$ $ ilde{B}$

- Extremely predictive!
 - More than double the particles of the SM
 - Fewer parameters

Of course, SUSY is broken in nature...

- How can we break SUSY without spoiling the solution to the hierarchy problem?
 - Must break SUSY spontaneously

Theory is supersymmetric

Theory is apparently non-supersymmetric

- How can we break SUSY without spoiling the solution to the hierarchy problem?
 - Must break SUSY spontaneously

- How can we break SUSY without spoiling the solution to the hierarchy problem?
 - Must break SUSY spontaneously

■ This induces the "soft SUSY-breaking" Lagrangian:

$$\mathcal{L}_{soft} = -\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \tilde{W} \tilde{W} + M_1 \tilde{B} \tilde{B} + H.c. \right)$$

masses for superpartners only

$$-\tilde{Q}_{L}^{*}M_{Q}^{2}\tilde{Q}_{L}-\tilde{u}_{R}^{*}M_{u}^{2}\tilde{u}_{R}-\tilde{d}_{R}^{*}M_{d}^{2}\tilde{d}_{R}-\tilde{L}_{L}^{*}M_{L}^{2}\tilde{L}_{L}-\tilde{e}_{R}^{*}M_{e}^{2}\tilde{e}_{R}$$

trilinear couplings: one for each super-potential term

$$-\left(A_u\tilde{u}_R\tilde{Q}_LH_u + A_d\tilde{d}_R\tilde{Q}_LH_d + A_e\tilde{e}_R\tilde{L}_LH_d + H.c.\right)$$

and same in the Higgs sector

$$-m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (bH_u H_d + H.c.)$$

over 100 free parameters!

Unlike in the SM, we cannot write down all interactions allowed by gauge symmetries:

$$W = \mu H_u H_d + Y_u Q_L H_u u_R + Y_d Q_L H_d d_R + Y_e L_L H_d e_R$$

$$+ \hat{\mu} H_u L_L + \lambda'' u_R d_R d_R + \lambda' Q_L L_L d_R + \lambda L_L L_L e_R$$

$$\text{violates } B$$

$$\text{violates } L$$

- Leads to whole tensors of new B and L-violating couplings:
 - e.g. Yukawas, $\lambda''_{112}(u_R d_R)\tilde{s}_R$, $\lambda'_{112}\tilde{s}_R(e_L u_L)$

Catastrophic proton decay:

product of B, L violating Yukawa couplings must be extremely small:

$$\Gamma \sim \frac{|\lambda_{112}'' \lambda_{112}'|^2 m_p^5}{m_{\tilde{s}}^4} < 10^{34} \,\text{years}$$

Easy solution: impose a new global symmetry:

$$W = \mu H_u H_d + Y_u Q_L H_u u_R + Y_d Q_L H_d d_R + Y_e L_L H_d e_R$$
$$+ \hat{\mu} H_u L_L + \lambda'' u_R d_R d_R + \lambda' Q_L L_L d_R + \lambda L_L L_L e_R$$

• impose matter parity: $P_M = (-1)^{3(B-L)}$

Gauge interactions:

define *R*-parity:

$$P_R = (-1)^{3(B-L)+2s}$$

exactly the same! but easier to see consequences

even	odd
f (spin 1/2)	$\tilde{f}(\text{spin }0)$
V (spin 1)	\widetilde{V} (spin 1/2)
H (spin 0)	\widetilde{H} (spin 1/2)

■ Immediate consequence: lightest superpartner is stable

- This significantly restricts the spectrum:
 - lightest superpartner must be neutral
 - and must not over-close the universe

R-PARITY: DARK MATTER

- Lightest Supersymmetric Particle is an attractive DM candidate:
 - electroweak interactions, electroweak scale mass
 - Possible candidates:
 - neutralinos \tilde{B} , \tilde{W}^3 , \tilde{h}_u , \tilde{h}_d
 - \blacksquare sneutrinos $\tilde{\nu}_L, \, \tilde{\nu}_R$
 - the devil is in the details

- So about those >100 free parameters...
 - Tremendous constraints from flavor, CP
 - flavor structure can't be arbitrary: SUSY flavor problem
 - Top-down: specific models of SUSY-breaking impose characteristic relationships between soft parameters
 - gauge mediation, gravity mediation, anomaly mediation, ...
 - Bottom-up: *CP*-preserving, nearly flavor-symmetric sector
 - "pMSSM": a mere 20 parameters

Example gravity-mediated spectrum

Example gravity-mediated spectrum

Example gauge-mediated spectrum

Example bottom-up spectrum

Rich spectrum means complicated decays:

SUSY SEARCHES

- Given enormous complexity and variability of signals, how should we approach SUSY searches at colliders?
 - in some ways easier to approach now than at the beginning of the LHC program, as we have learned that copious production of multiple BSM species is not in the cards
 - On the other hand, we have also learned that, if weak-scale SUSY exists, it is likely to take a substantially different form than the models intensively developed by the pre-LHC community (non-minimal, fine-tuned (< 0.1%), etc.)

■ *R*-parity: produce superparticles in pairs

gluino pair production

 superparticles cascade down to pairs of (N)LSPs: generic missing energy

Superpartner production cross-sections

colored states dominate production

~10 events in 1 fb⁻¹

SM background cross-sections are much larger overall

...but fall off rapidly with just about any kinematic variable that has dimensions of mass:

...but fall off rapidly with just about any kinematic variable that has dimensions of mass:

Essential discovery strategy:

- demand certain numbers of objects (jets, *b*-jets, MET, leptons...)
- determine a suitable kinematic variable or two
- count events in the energetic tail

Efficiently parameterize search for whole model at once?

not transparent; not flexible

- Design search regions that balance:
 - high signal efficiency, i.e., are well-targeted to the model
 - flexibility, i.e., also have reach for the model next door
- Useful to focus on a few particles at a time:

Results for specific simplified event topology:

Often a model will predict additional processes:

- Different search: jets + MET + lepton
- define enough search regions to cover all common production, decay modes; kinematics
- and remember that a typical MSSM signal will have finite branching ratios for any specific search topology

- Search reach is maximized for:
 - high, but not too high, mass
 - large cross-section: many colored degrees of freedom
 - lots of MET
- Remaining spaces for SUSY signals (and BSM signals in general) where these conditions break down

SQUEEZED SUSY

Maybe SUSY spectrum is compressed?

- Need hard ISR jet: reduces rate by $\mathcal{O}(\alpha_s) \sim 0.1$
- Increased signal rates at 13 TeV make it harder and harder to accommodate really light superpartners

STEALTH SUSY

 Hide SUSY by sticking a small mass splitting on the end of the cascade decay:

STEALTH SUSY

Trading MET for high jet multiplicities

- Experimental handles:
 - resonances
 - jet substructure
 - possibly: high-multiplicity b-jets
 - possibly: displaced vertices
- Hidden sectors signatures: more tomorrow

RPV SUSY

■ Can also eliminate MET signal by allowing *R*-parity violating couplings

- But what about proton decay?
 - switch on only *B*-violating or only *L*-violating couplings

RPV SUSY

• Still expect pair production to dominate: $\lambda_{RPV} \ll g, g_s$

squark is lightest

neutralino/chargino is lightest

 Signatures have variable number of jets (and/or leptons, tops), 2 or 3 object resonances, possibly displaced vertices

RPV SUSY

- Search reach highly dependent on spectrum, type, flavor structure of RPV coupling
 - leptonic RPV: excellent (e.g.: gluinos excluded up to kinematic limit)
 - all-hadronic: much harder, requires careful modelling of QCD, but high scales and large multiplicities do offer handles (e.g. $\tilde{g} \rightarrow jjj$ excluded up to ~900 GeV)
 - challenging at low mass (e.g. squarks): high backgrounds
 - Resonances don't help as much as you might think, for multijet decays (can get $\tilde{g} \to 5j$): combinatorics, smearing

NATURAL SUSY

 Maybe we don't have the whole zoo of MSSM states near the weak scale

- Maybe just the states most immediately important for addressing the hierarchy problem:
 - higgsinos mass related to m_h at tree level
 - stops most important quantum correction
 - gluinos stops have their own hierarchy problem!

NATURAL SUSY

Direct stop production is a tougher target than gluinos

Compressed spectra are hard!

but 13 TeV results fill in many gaps at low mass

ELECTROWEAK SUSY

Direct higgsino production is very hard:

MINI-SPLIT SUSY

- Maybe much of the spectrum is simply out of reach
 - tuned! Put sfermions up at ~100 TeV, keep inos near(ish) weak scale
 - keeps unification, DM candidate
 - solves SUSY flavor issue
 - jibes well with $m_h=125$ GeV
 - can predict displaced decays (more tomorrow)

BACKUP

$$-i \,\delta m_h^2 \big|_{top} = -2N_c y_t^2 \int \frac{d^4 k}{(2\pi)^4} \, \frac{k^2 + m_t^2}{(k^2 - m_t^2)^2}$$

$$-i \,\delta m_h^2 \big|_{top} = -2N_c y_t^2 \int \frac{d^4 k}{(2\pi)^4} \, \frac{k^2 + m_t^2}{(k^2 - m_t^2)^2}$$

$$\delta m_h^2|_{top} = -\frac{3y_t^2}{8\pi^2} \left(\Lambda^2 - 3m_t^2 \ln\left(\frac{\Lambda^2 + m_t^2}{m_t^2}\right) + \ldots \right)$$

Let's do an explicit example: top and stop loops

In general also SUSY-breaking contribution to trilinears

$$\delta m_h^2\big|_{stop \, 1} = \frac{3y_t^2}{16\pi^2} \left(2\Lambda^2 - m_L^2 \ln\left(\frac{\Lambda^2 + m_L^2}{m_L^2}\right) - m_R^2 \ln\left(\frac{\Lambda^2 + m_R^2}{m_R^2}\right) + \ldots\right)$$

Let's do an explicit example: top and stop loops

$$ilde{t}_L,\, ilde{t}_R$$

$$\delta m_h^2 \big|_{stop \, 2} = -\frac{3y_t^2}{8\pi^2} \left(m_t^2 \ln \left(\frac{\Lambda^2 + m_L^2}{m_L^2} \right) - m_t^2 \ln \left(\frac{\Lambda^2 + m_R^2}{m_R^2} \right) + \ldots \right)$$

No quadratic divergences: dimensionally impossible

SUSY-breaking trilinears: mt -> more general function

- Let's do an explicit example: top and stop loops
 - Add everything up:

$$\delta m_h^2 \big|_{top} = -\frac{3y_t^2}{8\pi^2} \left(\Lambda^2 - 3m_t^2 \ln \left(\frac{\Lambda^2 + m_t^2}{m_t^2} \right) + \ldots \right)$$

$$\delta m_h^2\big|_{stop\,1} = \frac{3y_t^2}{16\pi^2} \left(2\Lambda^2 - m_L^2 \ln\left(\frac{\Lambda^2 + m_L^2}{m_L^2}\right) - m_R^2 \ln\left(\frac{\Lambda^2 + m_R^2}{m_R^2}\right) + \ldots \right)$$

$$\left. \delta m_h^2 \right|_{stop \, 2} = -\frac{3y_t^2}{8\pi^2} \left(m_t^2 \ln \left(\frac{\Lambda^2 + m_L^2}{m_L^2} \right) + m_t^2 \ln \left(\frac{\Lambda^2 + m_R^2}{m_R^2} \right) + \dots \right)$$

Quadratic divergence cancels independently of soft breaking terms

Exact SUSY: log divergence cancels too