

Hadron Accelerators

Part 1 of 2

Rende Steerenberg BE-OP

CERN - Geneva

Topics

A brief Word on Accelerator History

The CERN Accelerator Complex

A Brief Word on Relativity & Units

Transverse Motion

A brief Word on Accelerator History

Cockroft & Walton / van de Graaff

- 1932: First accelerator single passage 160 700 keV
- Static voltage accelerator
- Limited by the high voltage needed

Cyclotron

- 1932: 1.2 MeV 1940: 20 MeV (E.O. Lawrence, M.S. Livingston)
- E = 80 keV for 41 turns
- Constant magnetic field
- Alternating voltage between the two D's
- Increasing particle orbit radius Development lead to the synchro-cyclotron to cope with the relativistic effects (Energy ~ 500 MeV)

In 1939 Lawrence received the Noble prize for his work.

Betatron

- 1940: Kerst 2.3 MeV and very quickly 300 MeV
- First machine to accelerate electrons to energies higher than from electron guns
- It is actually a transformer with a beam of electrons as secondary winding
- The magnetic field is used to bend the electrons in a circle, but also to accelerate them
- A deflecting electrode is use to deflect the particles for extraction.

Linear Accelerator

- Many people involved: Wideroe, Sloan, Lawrence, Alvarez,....
- Main development took place between 1931 and 1946.
- Development was also helped by the progress made on high power high frequency power supplies for radar technology.
- Today still the first stage in many accelerator complexes.
- Limited by energy due to length and single pass.

Synchrotrons

- 1943: M. Oliphant described his synchrotron invention in a memo to the UK Atomic Energy directorate
- 1959: CERN-PS and BNL-AGS
- Fixed radius for particle orbit
- Varying magnetic field and radio frequency
- Phase stability
- Important focusing of particle beams (Courant – Snyder)
- Providing beam for fixed target physics
- Paved the way to colliders

The CERN Accelerator Complex

The CERN Accelerator Complex

LINAC 2

- Duoplasmatron proton source
- Extract protons at 90 keV from H₂

- Accelerates beam up to 50 MeV over a length of 33m, using Alvarez structures
- Provides a beam pulse every 1.2s

PS Booster

- 1st Synchrotron in the chain with 4 superposed rings
- Circumference of 157m
- Increases proton energy from 50 MeV to 1.4 GeV in 1.2s

- The LINAC2 pulse is distributed over the four rings, using kicker magnets
- Each ring will inject over multi-turns, accumulating beam in the horizontal phase space
- This means that the beam size (transverse emittance) increases when the intensity increases → ~ constant density

The PS Booster determines the transverse Brightness of the LHC beam

PS

- The oldest operating synchrotron at CERN
- Circumference of 628m
 - 4 x PSB circumference
- Increases proton energy from 1.4 GeV to a range of energies up to 26 GeV
- Cycle length varies depending on the final energy, but ranges from 1.2s to 3.6s

- The many different RF systems allow for complex RF gymnastics:
 - 10 MHz, 13/20 MHz, 40 MHz, 80 MHz, 200 MHz
- Various types of extractions:
 - Fast extraction
 - Multi-turn extraction (MTE)
 - Slow extraction

SPS

- The first synchrotron in the chain at about 30m under ground
- Circumference of 6.9 km
 - 11 x PS circumference
- Increases proton beam energy up to 450 GeV with up to ~5x10¹³ protons per cycle

- Provides slow extracted beam to the North Area
- Provides fast extracted beam to LHC, AWAKE and HiRadMat

LHC

- Situated on average ~100 m under ground
- Four major experiments (ATLAS, CMS, ALICE, LHCb)
- Circumference 26.7 km
- Two separate beam pipes going through the same cold mass 19.4 cm apart
- 150 tonnes of liquid helium to keep the magnets cold and superconducting

Filling the LHC and Satisfying Fixed Target users

How does the LHC fit in this?

- = Field in main magnets
- = Beam 1 intensity (current)
- = Beam 2 intensity (current)

The LHC is built to collide protons at 7 TeV per beam, which is **14 TeV centre of Mass**

In 2012 it ran at 4 TeV per beam, 8 TeV c.o.m.

Since 2015 it runs at 6.5 TeV per beam, 13 TeV c.o.m

A Brief Word on Relativity & Units

Towards Relativity

Momentum

Einstein's formula:

 $E=mc^2$ which for a mass at rest is: $E_{\scriptscriptstyle 0}=m_{\scriptscriptstyle 0}c^2$

The ratio between the total energy and the rest energy is

$$\gamma = \frac{E}{E_0}$$

The ratio between the real velocity and the velocity of light is

$$\beta = \frac{v}{c}$$

We can write:
$$\beta = \frac{mvc}{mc^2}$$

Momentum is:
$$p = mv$$

$$\beta = \frac{mvc}{mc^{2}}$$

$$p = mv$$

$$\beta = \frac{pc}{E} \quad or \quad p = \frac{E\beta}{c}$$

The Units for Energy

- The energy acquired by an electron in a potential of 1 Volts is defined as being 1 eV
- Thus $1 \text{ eV} = 1.6 \times 10^{-19} \text{ Joules}$

The unit eV is too small to be used today, we use:

1 KeV = 10^3 , MeV = 10^6 , GeV = 10^9 , TeV = 10^{12}

The Energy in the LHC beam

- The energy in one LHC beam at high energy is about 320 Million Joules
- This corresponds to the energy of a TGV engine going at 150 km/h

but then concentrated in the size of a needle

Energy versus Momentum

Momentum $p = \frac{E\beta}{c}$

- Therefore the units for
 - momentum are: MeV/c, GeV/c, ...etc.
 - Energy are: MeV, GeV, ...etc.

Attention:

when **β=1** energy and momentum are equal

when β<1 the energy and momentum are not equal

Transverse Motion

Lorentz Force

• Lorentz Formula:
$$\vec{F} = q\vec{E} + q\vec{v}\vec{x}\vec{B}$$

Magnetic force

Transverse motion is dominated by magnetic forces:

$$\vec{F} = q\vec{v} \ x \ \vec{B}$$

- Radius of curvature in the magnet
- Linear motion before and after

Magnetic Rigidity

The Lorentz Force can be seen as a Centripetal Force

$$F = q\vec{v} \times \vec{B} = \frac{mv^2}{\rho}$$

• ρ is the particle's **radius of curvature** in the magnetic field

$$B\rho = \frac{mv}{q} = \frac{p}{q}$$

• $B\rho$ is the magnetic rigidity

$$B\rho[\text{Tm}] = \frac{mv}{a} = \frac{p[\text{GeV/c}]}{a}$$

$$B\rho = 3.3356 p$$

 Increasing the momentum of a particle beam and keeping the radius constant requires ramping the magnetic fields

Ex. 1: Radius versus Radius of Curvature

- LHC circumference = 26658.883 m
 - Therefore the radius r = 4242.9 m
- There are 1232 main dipoles to make 360°
 - This means that each dipole deviates the beam by only 0.29°
- The dipole length = 14.3 m
 - The total dipole length is thus 17617.6 m, which occupies 66.09 % of the total circumference
- The bending radius ρ is therefore
 - $\rho = 0.6609 \times 4242.9 \text{ m} \rightarrow \rho = 2804 \text{ m}$
- Apart from dipole magnets there are also straight sections in our collider
 - These are used to house RF cavities, diagnostics equipment, special magnets for injection, extraction etc.

Ex. 2: High Energy LHC

- Use the existing LHC tunnel and replace existing magnets with high field superconducting magnets
- Beam rigidity:

$$B\rho = 3.3356 \, p$$

- ρ = 2804 m (fixed by tunnel geometry and filling factor)
- Vigorous R&D for 20 T dipole magnets is on-going (Nb₃SN and HTS)

$$p = \frac{2804 \times 20}{3.3356} \implies \sim 16.5 \text{ TeV per beam} \implies 33 \text{ TeV}_{cm}$$

Coordinate System

We can speak of a: Rotating Cartesian Co-ordinate System

LEIR as an Example

Injecting & Extracting Particles

Injecting & Extracting Particles

Septum Magnet

Injecting & **Extracting** Particles

Make Particles Circulate

Dipole Magnet

- A magnet with a uniform dipolar field deviates a particle by an angle θ in one plane
- The angle θ depends on the length L and the magnetic field B.

$$\sin\left(\frac{\theta}{2}\right) = \frac{L}{2\rho} = \frac{1}{2} \frac{LB}{(B\rho)}$$

$$\sin\left(\frac{\theta}{2}\right) = \frac{\theta}{2}$$

$$\theta = \frac{LB}{(B\rho)}$$

Oscillatory Motion of Particles

Two charged Particles in a homogeneous magnetic field

Horizontal motion

Different particles with different initial conditions in a homogeneous magnetic field will cause oscillatory motion in the horizontal plane

Betatron Oscillations

Oscillatory Motion of Particles

The horizontal motion seems to be "stable".... What about the vertical plane?

Many particles many initial conditions

Focusing Particle Beams

Focusing Quadrupole

De-focusing Quadrupole

Field gradient

$$K = \frac{\partial B_{y}}{\partial x} [Tm^{-1}]$$

Normalised gradient

$$k = \frac{K}{B\rho} [m^{-2}]$$

FODO Cell

- Using a combination of focusing (Q_F) and defocusing (Q_D)
 quadrupoles solves our problem of 'unstable' vertical motion.
- It will keep the beams focused in **both planes** when the position in the accelerator, type and strength of the quadrupoles are well chosen.
- By now our accelerator is composed of:
 - <u>Dipoles</u>, constrain the beam to some closed path (orbit).
 - Focusing and Defocusing Quadrupoles, provide horizontal and vertical focusing in order to constrain the beam in transverse directions.
- A combination of focusing and defocusing sections that is very often used is the so called: <u>FODO lattice</u>.
- This is a configuration of magnets where focusing and defocusing magnets alternate and are separated by non-focusing drift spaces.

FODO Lattice

A quadrupole is defined focusing if it is oriented to focus in the horizontal plane and defocusing if it defocusses in the horizontal plane

This arrangement gives rise to **Betatron oscillations** within an envelope

Focusing the Particle Beam

Hill's Equation

- These betatron oscillations exist in both horizontal and vertical planes.
- The number of betatron oscillations per turn is called the betatron tune and is defined as Q_x and Q_y.
- Hill's equation describes this motion mathematically

$$\frac{d^2x}{ds^2} + K(s)x = 0$$

- If the restoring force, K is constant in 's' then this is just a Simple Harmonic Motion (Like a pendulum)
- 's' is the longitudinal displacement around the accelerator

General Solutions of Hill's Equation

Position:
$$x(s) = \sqrt{\varepsilon \beta_s} \cos(\varphi(s) + \varphi)$$

Angle:
$$x' = -\alpha \sqrt{\frac{\varepsilon}{\beta}} \cos(\varphi) - \sqrt{\frac{\varepsilon}{\beta}} \sin(\varphi) \varphi$$

- ε and φ are constants determined by the initial conditions
- β (s) is the periodic envelope function given by the lattice configuration

$$\varphi(s) = \int_0^s \frac{ds}{\beta(s)}$$

• $\varphi(s)$ Is the phase advance over 1 turn around the machine

$$Q_{x/y} = \frac{1}{2\pi} \int_0^{2\pi} \frac{ds}{\beta_{x/y}(s)}$$

 Q_x and Q_y are the horizontal and vertical tunes: the number of oscillations per turn around the machine

function and individual particles

- The β function is the envelope function within which all particles oscillate
- The shape of the β function is determined by the lattice

Oscillations in Accelerators

Under the influence of the magnetic fields the particle oscillate

Rende Steerenberg CERN - Geneva

Transverse Phase Space Plot

We distinguish motion in the Horizontal & Vertical Plane

Phase Space Elipse Rotation

For each point along the machine the ellipse has a particular orientation, but the area remains the same

Transverse Emittance

- Observe all the particles at a single position on one turn and measure both their position and angle.
- This will give a large number of points in our phase space plot, each point representing a particle with its co-ordinates x, x'.

Symbol: &

Expressed in 1σ , 2σ ,...

Units: mm mrad

- The <u>emittance</u> is the <u>area</u> of the ellipse, which contains all, or a defined percentage, of the particles.
- The <u>acceptance</u> is the maximum <u>area</u> of the ellipse, which the emittance can reach without losing particles

Adiabatic Damping of Beam Size

 If we use the Gaussian definition emittance, then the rms beam size is given by:

$$\sigma_{\chi} = \sqrt{\beta_{\chi} \varepsilon}$$

$$\sigma_y = \sqrt{\beta_y \varepsilon}$$

- The emittance is constant at constant energy, but accelerating particles will decrease the emittance, which is called adiabatic damping
- To be able to compare emittances at different energies it is normalised to become invariant, provided the is no blow up

$$\varepsilon_{x}^{n} = \beta \gamma \varepsilon_{x}$$

$$\varepsilon_y^n = \beta \gamma \varepsilon_y$$

Emittance measurement

Saturday Morning More.....

