The physics of heavy-ion collisions

Alexander Kalweit, *CERN*

Overview

- Three lectures (one hour each):
 - Friday, 10:30h-11:30h (Prevessin)
 - Saturday, 11:30h-12:30h (Meyrin)
 - Monday, 10:30h-11:30h (Prevessin)
- Specialized discussion sessions with heavy-ion experts in the afternoons on Friday and Monday.
- Feel free to contact me for any questions regarding the lecture: Alexander.Philipp.Kalweit@cern.ch
- Many slides, figures, and input taken from:
 - Jan Fiete Grosse-Oetringhaus, Constantin Loizides, Federico Antinori, Roman Lietava

Outline and discussion leaders

- Introduction
- The QCD phase transition
- QGP thermodynamics and soft probes (Francesca)
 - Particle chemistry
 - QCD critical point and onset of de-confinement
 - (anti-)(hyper-)nuclei
 - Radial and elliptic flow
 - Small systems
- Hard scatterings (Leticia, Marta)
 - Nuclear modification factor
 - Jets
- Heavy flavor in heavy-ions
 - Open charm and beauty
 - Quarkonia

Francesca Bellini

Leticia Cunqueiro

Marta Verweij

Summary lecture 2

- Now we know the temperature of the system at the final decoupling.
- Today: elliptic flow and why the QGP is an ideal liquid.

Particle detection (t≈10¹⁵fm/c)

Kinetic freeze-out (t=10fm/c)

Chemical freeze-out 156 MeV

Hydrodynamic evolution (t~0.5fm/c)

Pre-equilibrium Collision (t=0fm/c)

QGP thermodynamics and soft probes Radial and elliptic flow

Isotropic radial flow

Anisotropic (elliptic) flow

Anisotropic particle density

$$\frac{dN}{d\varphi} \propto 1 + 2v_1 \cos[\varphi - \Psi_1] + 2v_2 \cos[2(\varphi - \Psi_2)] + 2v_3 \cos[3(\varphi - \Psi_3)] + \dots$$

Radial flow

Common radial hydrodynamic expansion leads to a modification of the spectral shape: mass dependent boost.

- $\rightarrow p_{\rm T}$ -spectra harden with centrality.
- → More pronounced for heavier particles(e.g.: $p > K > \pi$) as velocities become equalized in the flow field $(p = \beta \gamma \cdot m)$.
- → Hydrodynamic models show a good agreement with the data.
- → Kinetic freeze-out temperature from Blast-Wave model: ~90 MeV

Relativistic Hydrodynamics

- General framework of relativistic hydrodynamics was first developed by Landau and is textbook knowledge since then.
- Only requirement for applicability: *local thermodynamic* equilibrium.
- Perfect fluid: no dissipation
 - Conservation of energy and momentum: $\partial_{\mu}T^{\mu\nu}=0$
 - Conservation of baryon number current: $\partial_{\mu}j_{B}^{\mu}(x)=0$ → gives five independent equations
- Six thermodynamic variables: the energy density $\varepsilon(x)$, the momentum density P(x), the baryon number density $n_B(x)$, and the fluid velocity v(x).
- Equation-of-state: functional relation of ε , P, and n_B (taken from Lattice QCD).
- In reality: dissipative corrections play an important role: \rightarrow shear viscosity η and bulk viscosity ζ (so called *transport* coefficiencts) enter in correction terms on the right hand side of the equations above.

Lew Landau (1908-1986)

Elliptic flow V_2

- Not only the observed particle spectrum in p_T , but also in φ is the result of the fireball expansion.
- If the system is asymmetric in spatial coordinates, scattering converts it to anisotropy in momentum space:

$$E\frac{d^{3}N}{d^{3}p} = \frac{d^{2}N}{2\pi p_{T}dp_{T}dy} \left\{ 1 + 2\sum_{n=1}^{\infty} v_{n}(p_{T})\cos[n(\varphi - \psi_{n})] \right\}$$

 v_1 – direct flow, v_2 - elliptic flow Radial flow

 If nuclei overlap was a smooth almond shape, odd harmonics $(v_3,...)$ would be zero.

Centrality dependence of v_i

- v₂ exhibits a strong centrality dependence
- v_2 largest for 40-50%
- Spatial anisotropy very small in central collisions
- Largest anisotropy in mid-central collisions
- Small overlap region in peripheral collisions

CMS, PRC 87(2013) 014902

Mass ordering of v_2 vs. transverse momentum

Transverse momentum dependence of elliptic flow shows the same mass ordering (p = $\beta y \cdot m$) as radial flow and as expected from hydrodynamics. → interplay of radial and elliptic flow.

Sensitivity of v_2 to shear viscosity

[Phys.Rev.Lett. 106 (2011) 192301]

- The larger the shear viscosity per entropy density ratio η/s of the QGP, the more v_2 is reduced.
- Dissipative losses hamper the buildup of flow => measuring the magnitude of v_2 and comparing it to models, we can determine how ideal the QGP liquid is.

Ideal fluids

 \rightarrow Why are ideal fluids (η /s very small) fascinating? Look at superfluid Helium as an example: https://www.youtube.com/watch?v=2Z6UJbwxBZI

Double ridges (1)

- Subtraction procedure to "isolate" ridge contribution from jet correlations:
 - No ridge seen in 60-100% and similar to pp.
 - As a result one finds two symmetric ridges as expected from elliptic flow ("hydro-like").

Double ridges (2)

Long-range azimuthal correlations (as originating from elliptic flow) are also observed in small systems: double ridges.

Similar observations hold true for many other typical kinetic heavy-ion observables measured in high multiplicity pp and pPb collsions → clear indication for collectivity in small systems.

Hard scatterings and jets

Jet-medium interactions (1)

Jet-medium interactions (2)

One jet disappears (or loses a substantial amount of its energy) in the QGP

→ "jet quenching"

→ N.B.: To stop a highly energetic jet (e.g. 100 GeV), it needs a 10fm droplet of QGP or ~1.5m of hadronic calorimeter.

Dijet asymmetry

- How often do jets lose a large amount of energy?
 → quantified by the dijet asymmetry
- Two highest energy jets with $\Delta \phi > 2\pi/3$:

$$A_{J} = \frac{|p_{T1} - p_{T2}|}{p_{T1} + p_{T2}} \xrightarrow{p_{T1} = p_{T2} \rightarrow A_{J} = 0} A_{J} = 0$$

$$1/3 p_{T1} = p_{T2} \rightarrow A_{J} = 0.5$$

- Peripheral collisions: distribution as in Pythia (as in pp)
- Central collisions:
 - Symmetric configuration is significantly depleted
 - Enhancement of asymmetric configurations

Nuclear modification factor $R_{\Delta\Delta}$

- Hard process occur in initial nucleon-nucleon (NN) collisions. The momentum transfers in the later evolution of the system are smaller.
- Heavy-ion collision: many NN collisions
- Without *nuclear effects* (interaction with the QCD medium), a heavy-ion collision would just be a superposition of independent NN collisions with incoherent fragmentation.
- The number of independent NN collisions $< N_{coll} >$ can be calculated for a given impact parameter/centrality in the Glauber model.

$$R_{AA} = 1 \rightarrow \text{no modification}$$

 $R_{AA} != 1 \rightarrow \text{medium effects}$

The most simple example: R_{pA}

 In a pA collision, the proton hits on average 6.9 nucleons of the Pb nucleus:

$$\rightarrow$$
 coll> = 6.9 +/- 0.6

- We distinguish number of collisions N_{coll} and number of participants N_{part} :
 - A nucleon can collide several times with nucleons of the target nucleus (Glauber assumes that it stays intact after each collision).
 - Each nucleon with experiences at least one collision, is called a participant (N_{part}).

$$\Rightarrow N_{\text{part}} = N_{\text{coll}} + 1 \text{ in pPb}$$

Phys. Rev. Lett. 110 (2013) 082302

The most simple example: R_{pA}

In a pA collision, the proton hits on average 6.9 nucleons of the Pb nucleus:

$$\rightarrow$$
 < N_{coll} > = 6.9 +/- 0.6

- We distinguish number of collisions N_{coll} and number of participants N_{part} :
 - A nucleon can collide several times with nucleons of the target nucleus (Glauber assumes that it stays intact after each collision).
 - Each nucleon with experiences at least one collision, is called a participant (N_{part}).

$$=> N_{\text{part}} = N_{\text{coll}} + 1 \text{ in pPb}$$

How to determine N_{coll} and N_{part} ?

"Billard ball" Monte-Carlo, named after Roy Glauber, but orginally introduced to heavyion physics by Bialas, Blezynski, and Czyz (Nucl. Phys. B111(1976)461).

Assumptions:

- Nucleons travel on straight lines
- Collisions do not alter their trajectory (nor anything else, they remain intact) assuming their energy is large enough
- No quantum-mechanical interference
- Interaction probability for two nucleons is given by the nucleon-nucleon (pp) cross-section.
- Strong dependence on *impact parameter b*

R. Glauber

A. Bialas

http://cerncourier.com/cws/article/cern/53089

Glauber Monte-Carlo

Input to Glauber MC (1)

- Distributions of nucleons in nuclei:
 - well measured by electron-ion scattering experiments
 - Paramterised as Woods-Saxon disitrubtion

- Nucleon-nucleon cross-section
 - Measured in pp collisions or from extrapolations

Input to Glauber MC (2)

- Distributions of nucleons in nuclei:
 - well measured by electron-ion scattering experiments
 - Paramterised as Woods-Saxon disitrubtion

- Nucleon-nucleon cross-section
 - Measured in pp collisions or from extrapolations

Glauber MC output

Typical values:

- 10% most central collisions at RHIC (Au-Au, 200 GeV)
 - $-N_{coll} \sim 1200$
 - $-N_{\text{part}} \sim 380$
- 5% most central collisions at LHC (Pb-Pb 2.76 TeV)
 - $-N_{coll} \sim 1680$
 - $-N_{\text{part}} \sim 382$
- Difference mainly from crosssection increase and slightly larger nucleus

Centrality and Glauber model

Multiplicity is inversely proportional to the impact parameter => Knowing the multiplicity of the event, we roughly know the impact parameter (and thus also N_{coll} and N_{part}). We *fit* the multiplicity distribution with the Glauber model (see next slide).

Multiplicity is strongly correlated in different phase space regions in heavyion collisions (e.g. forward and midrapditity).

Geometry of heavy ion collisions

Centrality Variables:

- •**N**_{coll}: Number of nucleon-nucleon collisions
- •N_{part}: Number of participating nucleons
- Percentile of hadronic cross-section:
- 0-5% => central ("many particles") 80-90% => peripheral ("few particles")
 - → We can determine (a posteriori) the geometry of heavy ion collisions. More details on the **Glauber model** when discuss hard probes...

Does the Glauber model work?

→ Yes, we can test it with electroweak control probes.

 $R_{AA} = \frac{dN_{AA}/dp_T}{\langle N_{coll} \rangle dN_{pp}/dp_T}$

→ No medium modification observed (despite multiplying by N_{coll}~1680!).

R_{AA} for charged hadrons (1)

- N_{coll} scaling works well above $p_T > 4$ GeV/c for electroweak probes and also in pPb. => There are no cold nuclear matter effects and N_{coll}-scaling is a reasonable assumption for AA.
- high p_T -particles observed in AA collisions which is a true medium effect. => High p_T particle production in AA collision is not a simple superposition of incoherent nucleonnucleon collisions.

There is a significant suppression of

How does the medium achieve this suppression?

R_{AA} for charged hadrons (2)

ATLAS Collaboration, JHEP09(2015)050

- \rightarrow No high p_T particle suppression at SPS energies.
- → All LHC experiments in agreement.

Energy loss in the QGP

- The QGP is a high density source of color sources (quarks and gluons) which are felt by the traversing quark or gluon.
- It experiences
 - Collisional energy loss: elastic scatterings, dominant at low momentum
 - Radiative energy loss: inelastic scatterings, gluon bremsstrahlung, dominates at high momentum
- Total energy loss is a sum of the two processes.

[Lect. Notes Phys. 785,285 (2010)]

(radiative energy loss)

Radiative energy loss

- BDPMS formalism
 - Baier, Dokshitzer, Mueller, Peigne, Schiff
 - Infinte energy limit
 - Static medium

$$\Delta E \propto \alpha_S \cdot C_R \cdot \hat{q} \cdot L^2$$

- Energy loss proportional to:
 - Path length through medium squared
 - Casimir factor
 - CR = 4/3 (quarks)
 - CR = 3 (gluons)
 - Medium properties are encoded in the parameter "q-hat" which corresponds to the average squared transverse momentum transfer per mean free path.

→ For the characterization of the QGP medium, q-hat has a similar significance as e.g. the shear viscosity.

$$\hat{q} = \frac{\left\langle q_T^2 \right\rangle}{\lambda} \leftarrow \text{average momentum transfer}$$
 mean free path

Determination of q-hat

- From the theory side, the JET collaboration extracted q-hat using combined CMS and ALICE LHC $R_{\rm AA}$ data assuming no fluctuations of initial conditions and coupling the same hydro to all energy loss models.
- 5 different models with different approaches:
 - higher twist (HT-BW, HT-M)
 - hard thermal loop (MARTINI, McGill-AMY)
 - opacity expansion (GLV-CUJET)

quark with E = 10 GeV

For comparison: in cold nuclear matter $q = 0.02 \text{ GeV}^2/\text{fm}$

(at $t_0 = 0.6 \text{ fm}$)

PID via d*E*/d*x* on the relativistic rise (1)

PID via d*E*/d*x* on the relativistic rise (2)

R_{AA} for identified particles (1)

R_{AA} for identified particles (2)

 R_{AA} independent of hadron species (light quarks) for momenta above ~8 GeV/c.

Quarkonia and heavy flavour

Heavy flavor (1)

- Heavy quark flavors (c,b) are dominantly produced in initial hard scatterings (calculable in pQCD) and then interact with the medium.
- There is strong evidence that **charm quarks thermalize** in the medium.

(A.) Elliptic flow of D mesons:

(B.) Baryon-to-meson enhancement seen in $\Lambda_{\mathbb{C}}$:

Heavy flavor (2)

- Heavy quark flavors (c,b) are dominantly produced in initial hard scatterings (calculable in pQCD) and then interact with the medium.
- There is strong evidence that charm quarks thermalize in the medium.
- N.B.: electroweak probes do not show any interaction with the medium.

J/ψ recombination

- \rightarrow As $c\bar{c}$ bound state, the J/ ψ is expected not to be bound in the QGP phase (Matsui/Satz, 1986), but it can regenerate at the phase boundary.
- → 5.02 TeV Pb-Pb data strongly confirms J/ψ recombination picture:
 - $R_{AA}(LHC) > R_{AA}(RHIC)$
 - R_{AA} midrapidity > R_{AA} forward rap.
- → Signature of de-confinement.

[P. Braun-Munzinger, J. Stachel, Nature doi:10.1038/nature06080]

High (LHC) energy
$$D$$

- $R_{\rm AA} = \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}}{\langle N_{\rm coll} \rangle \cdot \mathrm{d}N_{\rm pp}/\mathrm{d}p_{\rm T}}$
- R_{AA} < 1 \rightarrow suppression w.r.t pp coll.
- $R_{AA} > 1 \rightarrow$ enhancement w.r.t to pp coll.

Suppression of Upsilon states

[PRL 109 (2012) 222301]

No re-generation for the much more rare b-quarks! Suppression of Y(1S) ground, and excited Y(2S) and Y(3S) states.

Summary

Further reading

Lectures

- J. Stachel, K. Reygers (2011) http://www.physi.uni-heidelberg.de/~reygers/lectures/2011/qgp/qgp_lecture_ss2011.html
- P. Braun-Munzinger, A. Andronic, T. Galatyuk (2012) http://web-docs.gsi.de/~andronic/intro rhic2012/
- Quark Matter Student Day (2014) https://indico.cern.ch/event/219436/timetable/#20140518.detailed

Books

- C.Y. Wong, Introduction to High-Energy Heavy-Ion Collisions, World Scientific, 1994 http://books.google.de/books?id=Fnxvrdj2NOQC&printsec=frontcover
- L. P. Csernai, Introduction to Relativistic Heavy-Ion Collisions, 1994 (free as pdf) http://www.csernai.no/Csernai-textbook.pdf
- E. Shuryak, The QCD vacuum, hadrons, and superdensematter, World Scientific, 2004 http://books.google.de/books?id=rbcQMK6a6ekC&printsec=frontcover
- Yagi, Hatsuda, Miake, Quark-Gluon Plasma, Cambridge University Press, 2005 http://books.google.de/books?id=C2bpxwUXJngC&printsec=frontcover
- R. Vogt, UltrarelativisticHeavy-ion Collisions, Elsevier, 2007 http://books.google.de/books?id=F1P8WMESgkMC&printsec=frontcover
- W. Florkowski, Phenomenology of Ultra-Relativistic Heavy-Ion Collisions, World Scientific, 2010 http://books.google.de/books?id=4glp05n9lz4C&printsec=frontcover