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Twin Higgs

Higgs is a PNGB, and Higgs potential is O(8) symmetric
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The Vector-like Twin
[NC, S. Knapen, P. Longhi, & M. Strassler ’16]
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To separate v and f and make the SM Higgs lie mostly in A 
introduce soft breaking µ2
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SM and its Twin coupled through portals
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Figure 1: Higgs portal interaction that keeps the A and B sectors in equilibrium.

interaction is an integral part of the twin mechanism which addresses the hierarchy problem in this
framework. For this reason it is not possible to reduce the ratio v/f significantly without introducing
an unacceptable amount of tuning into the theory.

Let us now estimate the energy density in mirror radiation. It will be particularly convenient to
focus on the ratio of energy densities of the two sectors, ⇢

B

/⇢
A

. At the decoupling temperature T
D

the temperatures of the two sectors are equal, and therefore the ratio of energy densities of the two
sectors is simply the ratio of the e↵ective number of degrees of freedom,

T = T
D

⇠ GeV :
⇢

B

⇢
A

����
TD

=
g
⇤B

g
⇤A

����
TD

(2.3)

The e↵ective number of degrees of freedom in each sector is defined in the usual way,
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where the sum is over the degrees of freedom in each sector which are in equilibrium at a particular
temperature. For concreteness, we choose to evaluate the g

⇤

at 3 GeV. In the SM sector at that
temperature we include all fermions with masses between those of the electron and the tau, as well
as three generations of neutrinos, the gluons and the photon. In the twin sectors we include the same
matter content, but without the mirror charm and tau. This gives us

g
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|
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. (2.5)

Applying this to Eq. (2.3), we find that this translates to an energy density ratio of about 0.8 when
the two sectors decouple.

The bounds on energy density in hidden radiation come from Big Bang Nucleosynthesis (BBN),
and from the Cosmic Microwave Background (CMB), so ⇢

B

needs to be evaluated at these later times.
To calculate the ratio of energy densities it is therefore necessary to account for the degrees of freedom
that have left the bath, become nonrelativistic, and annihilated in both sectors. As species leave
the thermal bath the comoving entropy is conserved. As a result, when a sector transitions from an
initial e↵ective number of degrees of freedom g(i)

⇤

to a lower number g(f)
⇤

, the comoving energy density
increases by a factor of (g(i)

⇤

/g(f)
⇤

)1/3. By the time of BBN (or CMB) all species decouplings have
already occurred, and so the e↵ective g

⇤

is identical in both the A and B sectors, gBBN

⇤A

= gBBN

⇤B

†. As

†One also needs to consider that electron-positron decoupling happens after neutrino decoupling making the e↵ective
increase in energy density di↵er from the naive formula above. However, neutrino decoupling precedes electron
annihilation in both sectors and the correction to energy densities in both sectors is identical.
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vevs f > v, with the result that the visible sector is left at a higher temperature than the mirror
sector⇤. In this model the mirror neutrinos are significantly heavier than their SM counterparts,
resulting in a sizable contribution to the overall cosmological mass density in neutrinos that can be
detected by future probes of large scale structure such as DES [42], LSST [43] and DESI [44]. This
framework for neutrino masses therefore o↵ers a natural resolution to the cosmological problems of
the original proposal, while leading to interesting predictions for upcoming experiments.

The outline of this paper is as follows. In the next section, we discuss in greater detail the
cosmological problems of the original MTH model. In Section 3 we explore the range of parameter
space in which a long-lived massive particle that decays preferentially into visible sector states can
give rise to a su�ciently small �N

e↵

. In Sections 4 and 5 we introduce the ⌫MTH model, in which
neutrino masses are incorporated into the Twin Higgs framework via a Type-1 seesaw, and show that
there is a range of parameter space in which the late decays of right-handed neutrinos can solve the
cosmological problems of the original MTH model. We conclude in Section 6.

2 Cosmology in the Mirror Twin Higgs

As mentioned above, the original MTH model predicts an abundance of dark radiation in the early
Universe, in conflict with observation. In this section we review the problem and assess its severity.
Following the established convention, we use the label A to denote visible sector states, and the label
B to denote twin sector states.

In the original MTH model, the Z
2

symmetry is explicitly broken, but only softly. As a result
of this soft breaking, the vev of the SM Higgs hH

A

i = v = 246 GeV is smaller than the vev of the
twin Higgs hH

B

i = f by a factor of a few. In the MTH framework, the cancellation of quadratic
divergences arises from a Higgs portal interaction between the SM Higgs doublet and its twin partner.
As a consequence of this interaction, after electroweak symmetry breaking the SM Higgs h

A

and its
twin partner h

B

mix, so that the lightest Higgs state h is a linear combination of these two states,
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The state h is identified with the Higgs boson that has been observed with mass 125 GeV. Each of the
Higgs bosons h

A

and h
B

only has Yukawa couplings to the fermions in its own copy of the standard
model. Consequently the mass eigenstate h will couple to both sets of fermions, but with an interaction
strength suppressed by the mixing. As a result, in the early universe the 125 GeV Higgs mediates the
scattering of A and B femions o↵ one another, see Fig 1. This leads to an interaction rate between
the two sectors of order

h�vi '
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h
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Here T denotes the temperature of the bath, and yi

A

and yj

B

represent the Yukawa couplings of the
heaviest fermion that is in equilibrium in the corresponding sector at that temperature. Equilibrium
between the A and B sectors is maintained down to the temperature at which the scattering rate
is comparable to the Hubble expansion rate, nh�vi ⇠ H. Applying this formula, we find that the
Higgs portal interaction keeps the A and B sectors in equilibrium down to a temperature T

D

of order
3 GeV. Below this temperature the two sectors decouple. It should be noted that this Higgs portal

⇤Another framework for addressing the hierarchy problem in which a new particle decays preferentially into the
sector with the lightest electroweak vev was presented in [41], though both the number of sectors and assumptions
about decoupling are di↵erent.
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In equilibrium down to ~3 GeV
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Figure 1: Higgs portal interaction that keeps the A and B sectors in equilibrium.

interaction is an integral part of the twin mechanism which addresses the hierarchy problem in this
framework. For this reason it is not possible to reduce the ratio v/f significantly without introducing
an unacceptable amount of tuning into the theory.

Let us now estimate the energy density in mirror radiation. It will be particularly convenient to
focus on the ratio of energy densities of the two sectors, ⇢
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at 3 GeV. In the SM sector at that
temperature we include all fermions with masses between those of the electron and the tau, as well
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Applying this to Eq. (2.3), we find that this translates to an energy density ratio of about 0.8 when
the two sectors decouple.

The bounds on energy density in hidden radiation come from Big Bang Nucleosynthesis (BBN),
and from the Cosmic Microwave Background (CMB), so ⇢

B

needs to be evaluated at these later times.
To calculate the ratio of energy densities it is therefore necessary to account for the degrees of freedom
that have left the bath, become nonrelativistic, and annihilated in both sectors. As species leave
the thermal bath the comoving entropy is conserved. As a result, when a sector transitions from an
initial e↵ective number of degrees of freedom g(i)
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to a lower number g(f)
⇤

, the comoving energy density
increases by a factor of (g(i)
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)1/3. By the time of BBN (or CMB) all species decouplings have
already occurred, and so the e↵ective g
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= gBBN
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†One also needs to consider that electron-positron decoupling happens after neutrino decoupling making the e↵ective
increase in energy density di↵er from the naive formula above. However, neutrino decoupling precedes electron
annihilation in both sectors and the correction to energy densities in both sectors is identical.
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At A-B decoupling 
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At CMB a result g(f)
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is the same in both sectors. Then the ratio of energy densities at late times, including
the corrections from species leaving the baths, is given by
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We are now in a position to determine the corrections to �N
e↵

from the twin sector. At late
times, after the neutrinos have decoupled and the positrons have left the bath, neutrinos make up
roughly 0.4 of the energy density in SM radiation. It is then straightforward to translate a limit on
�N

e↵

into a limit on the ratio of energy densities in the A and B sectors,
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Here ⇢
⌫

refers to the energy density in all SM neutrinos. Current bounds on �N
e↵

from BBN
are of order 0.5-1, depending on the input (see for example [45]). The limits on �N

e↵

from the
CMB are more stringent, and require �N

e↵

. 0.6 at 2� [46]. This bound may be somewhat
relaxed if the dark radiation scatters with a short mean free path, as opposed to free streaming like
neutrinos [47]. It should also be noted that the recently observed tension between CMB observations
and the measurement of the local Hubble expansion can be interpreted as a hint of a�N

e↵

⇠ O(1) [48].
However, even after taking these factors into account, it is clear that an energy density ratio ⇢

A

/⇢
B

as large as predicted by the original MTH model (2.7), is ruled out both by Big Bang Nucleosynthesis
(BBN), and the Cosmic Microwave Background (CMB).

This tension with cosmology can be addressed in several ways. For example, if the two sectors
were to decouple at a time when there are significantly more degrees of freedom in the visible sector
than in the twin sector, the ratio of energy densities would decrease, leading to a smaller �N

e↵

. This
was considered in [24], which explored a scenario in which decoupling occurred after the QCD phase
transition in the twin sector, but before that in the visible sector. However, the e↵ective number of
degrees of freedom in the two sectors does not di↵er su�ciently, even during this short epoch, to fully
solve the problem. The model in [24] can therefore accommodate a photon in the twin sector, but not
the mirror neutrinos.

Another possibility is to simply remove all of the “unnecessary” light degrees of freedom from the
twin sector. In the FTH model [29] the twin sector is taken to contain only the third generation of
fermions, as well as the twin EW and QCD gauge bosons. One can further remove light degrees of
freedom by assuming that the twin sector is vector-like, as in [38]. This removes the need for the twin
tau neutrino.

3 A Viable Cosmology: Matter Domination and Preferential Decays

In this paper we will focus on the MTH framework, in which the full matter content of the SM is
replicated in the twin SM, with identical Yukawa couplings. The twin sector then contains three light
neutrinos and a massless photon. Although these light twin states will be thermalized in the early
universe, we now show that by minimally extending the original MTH model, their contribution to
the energy density at late times can be suppressed.

In the early universe the SM and twin SM are kept in thermal equilibrium through interactions
mediated by the Higgs portal. When the two sectors decouple, which happens at a temperature T

D

of order a few GeV, the SM and its twin are at the same temperature and contain roughly the same
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the energy density increases
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Planck Collaboration: Cosmological parameters

Fig. 30. Constraints on the sum of the neutrino masses for vari-
ous data combinations.

This is slightly weaker than the constraint from Planck
TT,TE,EE+lowP+lensing+BAO (which is tighter in both the
CamSpec and Plik likelihoods), but is immune to low level sys-
tematics that might a↵ect the constraints from the Planck polar-
ization spectra. Equation (57) is therefore a conservative limit.
Marginalizing over the range of neutrino masses, the Planck con-
straints on the late-time parameters are28

H0 = 67.7 ± 0.6

�8 = 0.810+0.015
�0.012

9>=
>; Planck TT+lowP+lensing+ext. (58)

For this restricted range of neutrino masses, the impact on the
other cosmological parameters is small and, in particular, low
values of �8 will remain in tension with the parameter space
preferred by Planck.

The constraint of Eq. (57) is weaker than the constraint of
Eq. (54b) excluding lensing, but there is no good reason to disre-
gard the Planck lensing information while retaining other astro-
physical data. The CMB lensing signal probes very-nearly lin-
ear scales and passes many consistency checks over the multi-
pole range used in the Planck lensing likelihood (see Sect. 5.1
and Planck Collaboration XV 2016). The situation with galaxy
weak lensing is rather di↵erent, as discussed in Sect. 5.5.2. In
addition to possible observational systematics, the weak lensing
data probe lower redshifts than CMB lensing, and smaller spa-
tial scales, where uncertainties in modelling nonlinearities in the
matter power spectrum and baryonic feedback become impor-
tant (Harnois-Déraps et al. 2015).

A larger range of neutrino masses was found by Beutler et al.
(2014) using a combination of RSD, BAO, and weak lens-
ing information. The tension between the RSD results and
base ⇤CDM was subsequently reduced following the analysis
of Samushia et al. (2014), as shown in Fig. 17. Galaxy weak
lensing and some cluster constraints remain in tension with base
⇤CDM, and we discuss possible neutrino resolutions of these
problems in Sect. 6.4.4.

28To simplify the displayed equations, H0 is given in units of
km s�1Mpc�1 in this section.
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Fig. 31. Samples from Planck TT+lowP chains in the Ne↵–H0
plane, colour-coded by �8. The grey bands show the constraint
H0 = (70.6 ± 3.3) km s�1Mpc�1 of Eq. (30). Notice that higher
Ne↵ brings H0 into better consistency with direct measurements,
but increases �8. Solid black contours show the constraints from
Planck TT,TE,EE+lowP+BAO. Models with Ne↵ < 3.046 (left
of the solid vertical line) require photon heating after neutrino
decoupling or incomplete thermalization. Dashed vertical lines
correspond to specific fully-thermalized particle models, for ex-
ample one additional massless boson that decoupled around the
same time as the neutrinos (�Ne↵ ⇡ 0.57), or before muon
annihilation (�Ne↵ ⇡ 0.39), or an additional sterile neutrino
that decoupled around the same time as the active neutrinos
(�Ne↵ ⇡ 1).

Another way of potentially improving neutrino mass con-
straints is to use measurements of the Ly↵ flux power spectrum
of high-redshift quasars. Palanque-Delabrouille et al. (2015)
have recently reported an analysis of a large sample of quasar
spectra from the SDSSIII/BOSS survey. When combining their
results with 2013 Planck data, these authors find a bound

P
m⌫ <

0.15 eV (95 % CL), compatible with the results presented in this
section.

An exciting future prospect is the possible direct detection
of non-relativistic cosmic neutrinos by capture on tritium, for
example with the PTOLEMY experiment (Cocco et al. 2007;
Betts et al. 2013; Long et al. 2014). Unfortunately, for the mass
range

P
m⌫ < 0.23 eV preferred by Planck, detection with the

first generation experiment will be extremely di�cult.

6.4.2. Constraints on Ne↵

Dark radiation density in the early Universe is usually parame-
terized by Ne↵ , defined so that the total relativistic energy density
in neutrinos and any other dark radiation is given in terms of the
photon density ⇢� at T ⌧ 1 MeV by

⇢ = Ne↵
7
8

 
4

11

!4/3

⇢�. (59)

The numerical factors in this equation are included so that
Ne↵ = 3 for three standard model neutrinos that were thermal-
ized in the early Universe and decoupled well before electron-
positron annihilation. The standard cosmological prediction is
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ΛCDM.
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Solve the problem

New very weakly coupled particle N
•decouples relativistically
• long lived, but decays before        decoupling and after AB 
decoupling 

•decays predominantly to A 

number of degrees of freedom. To realize our scenario we introduce into the theory one or more new
particles N that lie outside the SM, and have masses M

N

above a GeV. These new particles are
assumed to have very small couplings to the SM, and therefore decouple from the SM bath while still
relativistic. They then survive for a time as thermal relics, become nonrelativistic, and eventually come
to dominate the energy density of the universe before decaying. If these decays are preferentially to SM
states rather than to twin states, and furthermore occur after the the two sectors have decoupled, the
SM will be left at a higher temperature than its twin counterpart. Consequently the energy density of
the SM sector will be larger than that of the twin sector, allowing the bounds on �N
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represents the number of degrees in the visible sector at that temperature. In obtaining this expression
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– 6 –

mN >⇠ 1GeV

⌫SM

What is Neff?



⇢A ⇢B ⇢N

⇢N ⇠ a�3⇢N ⇠ a�4

a

ρ



⇢A ⇢B ⇢N

⇢N ⇠ a�3⇢N ⇠ a�4

a

ρ
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As the system evolves and cools, species continue to go out of both the A and B baths, resulting in an

increase in the comoving energy density of the corresponding sectors. Eventually the N decay, giving

an especially large contribution to the energy density of the SM sector.

The total energy density in the A sector immediately after the N have decayed, in the instanta-

neous decay approximation, is given by Eq. (3.3). The corresponding energy density in the B sector

can be approximated as
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Here T
B

,

R denotes the temperature in the B sector immediately after the N have decayed and g
⇤

B

,
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the number of degrees of freedom in the B sector at that temperature. In this expression, the first

term on the right hand side represents the contribution to the energy density arising from the decays

of the N . The second term is independent of the N and is instead associated with the primeval energy

density in the B sector. Since ✏ is small this term cannot, in general, be neglected. Taking the ratio of

Eqs. (3.3) and (3.13), and using Eq. (3.10) to eliminate the ratio of scale factors in favor of the width
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We see that for our mechanism to be e↵ective, both ✏ and R
N are required to be small.

Between the time of N
decay and late times,

i

.

e

. BBN and CMB, the A and B sectors may

pass through additional mass thresholds, each of which results in an increase of (g (

i

)

⇤ /g (

f

)

⇤ ) 1/
3

in the

temperature and energy density of the corresponding sector. In order to compare to the limit on �N
e

↵

we compare the energy density in the B sector to that in SM neutrinos at the temperature of neutrino

decoupling, Eq. (2.7). This leads to the expression�N
e

↵ ⇡ 7.4
✓
g
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,
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(3.16)

In figure 2 we have plotted �N
e

↵ as a function of M
N and �

N for di↵erent values of ✏. We see that

provided ✏ . 1/10, there is a broad range of parameters where the constraints from cosmology on

�N
e

↵ can be satisfied. Moreover, while the dark radiation in the cooler twin sector satisfies current

bounds on �N
e

↵ , it may lie within reach of future measurements of �N
e

↵ such as CMB Stage-IV

experiments [49].
The neutrinos in the twin sector will also contribute to the total mass density in neutrinos as

measured by cosmology. We now seek to determine the magnitude of this e↵ect. As we will see, this

e↵ect can be large, and constitutes a striking signal of this scenario. The first step is to determine

the number density of neutrinos in the twin sector. Shortly prior to the decoupling of the SM and

– 8 –



⇢A ⇢B ⇢N

⇢N ⇠ a�3⇢N ⇠ a�4

a

ρ

SM and twin sectors at decoupling. The corresponding expressions for the energy densities in the SM

and twin sectors immediately after decoupling are given by

⇢
A

,

D = g
⇤

A

,

D

g
⇤

,

D

⇢
D

and
⇢
B

,

D = g
⇤

B

,

D

g
⇤

,

D

⇢
D .

(3.12)
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Here T
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In figure 2 we have plotted �N
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↵ as a function of M
N and �

N for di↵erent values of ✏. We see that

provided ✏ . 1/10, there is a broad range of parameters where the constraints from cosmology on
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↵ can be satisfied. Moreover, while the dark radiation in the cooler twin sector satisfies current

bounds on �N
e

↵ , it may lie within reach of future measurements of �N
e

↵ such as CMB Stage-IV

experiments [49].
The neutrinos in the twin sector will also contribute to the total mass density in neutrinos as

measured by cosmology. We now seek to determine the magnitude of this e↵ect. As we will see, this

e↵ect can be large, and constitutes a striking signal of this scenario. The first step is to determine

the number density of neutrinos in the twin sector. Shortly prior to the decoupling of the SM and
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As the system evolves and cools, species continue to go out of both the A and B baths, resulting in an

increase in the comoving energy density of the corresponding sectors. Eventually the N decay, giving

an especially large contribution to the energy density of the SM sector.

The total energy density in the A sector immediately after the N have decayed, in the instanta-
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Here T
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,

R denotes the temperature in the B sector immediately after the N have decayed and g
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,
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the number of degrees of freedom in the B sector at that temperature. In this expression, the first

term on the right hand side represents the contribution to the energy density arising from the decays

of the N . The second term is independent of the N and is instead associated with the primeval energy
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In figure 2 we have plotted �N
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↵ as a function of M
N and �

N for di↵erent values of ✏. We see that

provided ✏ . 1/10, there is a broad range of parameters where the constraints from cosmology on

�N
e

↵ can be satisfied. Moreover, while the dark radiation in the cooler twin sector satisfies current

bounds on �N
e

↵ , it may lie within reach of future measurements of �N
e

↵ such as CMB Stage-IV

experiments [49].
The neutrinos in the twin sector will also contribute to the total mass density in neutrinos as

measured by cosmology. We now seek to determine the magnitude of this e↵ect. As we will see, this

e↵ect can be large, and constitutes a striking signal of this scenario. The first step is to determine

the number density of neutrinos in the twin sector. Shortly prior to the decoupling of the SM and
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Here T
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the number of degrees of freedom in the B sector at that temperature. In this expression, the first

term on the right hand side represents the contribution to the energy density arising from the decays

of the N . The second term is independent of the N and is instead associated with the primeval energy
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The total energy density in the A sector immediately after the N have decayed, in the instanta-

neous decay approximation, is given by Eq. (3.3). The corresponding energy density in the B sector

can be approximated as

⇢
B

,

R = g
⇤

B

,

RT 4

B

,

R = 3✏�
N

2

M
2

P

l

+
✓
g
⇤

B

,

Dg
⇤

B

,

R

◆
1

/

3

⇢
B

,

D

✓
a
D

a
R

◆
4

.

(3.13)
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neous decay approximation, is given by Eq. (3.3). The corresponding energy density in the B sector
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Here T
B,R

denotes the temperature in the B sector immediately after the N have decayed and g
⇤B,R

the number of degrees of freedom in the B sector at that temperature. In this expression, the first
term on the right hand side represents the contribution to the energy density arising from the decays
of the N . The second term is independent of the N and is instead associated with the primeval energy
density in the B sector. Since ✏ is small this term cannot, in general, be neglected. Taking the ratio of
Eqs. (3.3) and (3.13), and using Eq. (3.10) to eliminate the ratio of scale factors in favor of the width
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We see that for our mechanism to be e↵ective, both ✏ and R
N

are required to be small.
Between the time of N decay and late times, i.e. BBN and CMB, the A and B sectors may

pass through additional mass thresholds, each of which results in an increase of (g(i)
⇤

/g(f)
⇤

)1/3 in the
temperature and energy density of the corresponding sector. In order to compare to the limit on �N
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we compare the energy density in the B sector to that in SM neutrinos at the temperature of neutrino
decoupling, Eq. (2.7). This leads to the expression
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In figure 2 we have plotted �N
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as a function of M
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and �
N

for di↵erent values of ✏. We see that
provided ✏ . 1/10, there is a broad range of parameters where the constraints from cosmology on
�N

e↵

can be satisfied. Moreover, while the dark radiation in the cooler twin sector satisfies current
bounds on �N

e↵

, it may lie within reach of future measurements of �N
e↵

such as CMB Stage-IV
experiments [49].

The neutrinos in the twin sector will also contribute to the total mass density in neutrinos as
measured by cosmology. We now seek to determine the magnitude of this e↵ect. As we will see, this
e↵ect can be large, and constitutes a striking signal of this scenario. The first step is to determine
the number density of neutrinos in the twin sector. Shortly prior to the decoupling of the SM and
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must lie above the neutrino decoupling temperature, taken to be 1 MeV, and below the SM-Twin
decoupling temperature, taken to be 3 GeV. We presents curves of �N
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= 0.6 and we have assumed
the ratio of EW breaking scales f/v = 3. The solid, dotted and dashed curves denote ✏ = 0, 0.05
and 0.08 respectively, and the region with �N
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 0.6 lies below the corresponding curve. The red
and green solid lines correspond to the width of the right handed neutrino in the model described in
section 4, showing that this model produces a viable cosmology.

twin neutrinos from their respective baths, the degrees of freedom in the two sectors are identical,
and consist of the electron, the photon and the three neutrinos. Then the ratio of neutrino number
densities in the two sectors is given by
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Now, comoving entropy conservation implies that
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The comoving number density of neutrinos does not change during or after their decoupling from the
thermal bath. Therefore this equation continues to remain true at late times, and can be used to
determine the number density of twin neutrinos.

It follows from this that the ratio of the mass densities in neutrinos satisfies
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In the absence of additional Z
2

breaking in the neutrino sector, twin neutrinos are expected to be
heavier than their SM counterparts. The reason is that neutrino masses arise as an electroweak
symmetry breaking e↵ect, and the vev of the Twin Higgs is larger than that of the SM Higgs. If

– 9 –

Conservation of entropy allows us to relate this to earlier times

Figure 2: The constraints on m
N

� �
N

parameter space. The reheat temperature after N decay
must lie above the neutrino decoupling temperature, taken to be 1 MeV, and below the SM-Twin
decoupling temperature, taken to be 3 GeV. We presents curves of �N

e↵

= 0.6 and we have assumed
the ratio of EW breaking scales f/v = 3. The solid, dotted and dashed curves denote ✏ = 0, 0.05
and 0.08 respectively, and the region with �N

e↵

 0.6 lies below the corresponding curve. The red
and green solid lines correspond to the width of the right handed neutrino in the model described in
section 4, showing that this model produces a viable cosmology.

twin neutrinos from their respective baths, the degrees of freedom in the two sectors are identical,
and consist of the electron, the photon and the three neutrinos. Then the ratio of neutrino number
densities in the two sectors is given by

n
⌫,B

n
⌫,A

=
T 3

B

T 3

A

. (3.17)

Now, comoving entropy conservation implies that

g
⇤B,R

T 3

B,R

g
⇤A,R

T 3

A,R

=
T 3

B

T 3

A

. (3.18)

We therefore find that

n
⌫,B

n
⌫,A

=
g
⇤B,R

T 3

B,R

g
⇤A,R

T 3

A,R

=

✓
g
⇤B,R

g
⇤A,R

◆
1/4

(✏ + R
N

)3/4 . (3.19)

The comoving number density of neutrinos does not change during or after their decoupling from the
thermal bath. Therefore this equation continues to remain true at late times, and can be used to
determine the number density of twin neutrinos.

It follows from this that the ratio of the mass densities in neutrinos satisfies
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In the absence of additional Z
2

breaking in the neutrino sector, twin neutrinos are expected to be
heavier than their SM counterparts. The reason is that neutrino masses arise as an electroweak
symmetry breaking e↵ect, and the vev of the Twin Higgs is larger than that of the SM Higgs. If
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The comoving number density of neutrinos does not change during or after their decoupling from the
thermal bath. Therefore this equation continues to remain true at late times, and can be used to
determine the number density of twin neutrinos.
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The comoving number density of neutrinos does not change during or after their decoupling from the
thermal bath. Therefore this equation continues to remain true at late times, and can be used to
determine the number density of twin neutrinos.

It follows from this that the ratio of the mass densities in neutrinos satisfies
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breaking in the neutrino sector, twin neutrinos are expected to be
heavier than their SM counterparts. The reason is that neutrino masses arise as an electroweak
symmetry breaking e↵ect, and the vev of the Twin Higgs is larger than that of the SM Higgs. If
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The comoving number density of neutrinos does not change during or after their decoupling from the
thermal bath. Therefore this equation continues to remain true at late times, and can be used to
determine the number density of twin neutrinos.

It follows from this that the ratio of the mass densities in neutrinos satisfies
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breaking in the neutrino sector, twin neutrinos are expected to be
heavier than their SM counterparts. The reason is that neutrino masses arise as an electroweak
symmetry breaking e↵ect, and the vev of the Twin Higgs is larger than that of the SM Higgs. If
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Dial “N” for neutrino

neutrinos are Dirac, we expect that m
⌫,B

/m
⌫,A

⇡ f/v. If instead neutrinos are Majorana, we expect
that m

⌫,B

/m
⌫,A

⇡ f2/v2, in the absence of any Z
2

breaking in the neutrino sector. We see that if
neutrinos are Majorana, for ✏ = 1/10 and v/f < 1/3, the total mass density in neutrinos is larger than
in the SM. It is important to keep in mind that the bounds in the literature on the sum of neutrino
masses are not directly applicable, since the twin neutrinos are at a lower temperature than the SM
neutrinos. Nevertheless, this constitutes a striking signal of this scenario.

4 Neutrino Masses and Cosmology

In this section we extend the MTH framework to include neutrino masses by incorporating into the
theory a Type-I seesaw. We show that if the mass scale of the right-handed neutrinos is of order a
GeV, this construction o↵ers a simple resolution to the cosmological problems associated with this
class of models along the lines discussed in Section 3, and leads to interesting predictions for upcoming
experiments. We begin in §4.1 with a toy model in which there is only one family of neutrinos and
show that the allowed parameter space is accessible. We later show in §5 that this is also the case in
two classes of models with three families. Since, in detail, the phenomenology depends on whether
or not the neutrino sector respects the Z

2

twin symmetry, we briefly consider the possibility of Z
2

breaking in §4.2.

4.1 Z
2

Symmetric Neutrino Sector with One Family

To illustrate the mechanism, we consider first the case of just one family of SM and twin neutrinos.
The relevant terms in the Lagrangian take the schematic form,
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Here the subscripts A and B denote the SM fields and their twin counterparts respectively. The
discrete Z

2

symmetry enforces the equality of the mass and interaction terms in the SM and twin
sectors. We have included a mass parameter M

AB

that mixes the right-handed neutrinos in the two
sectors. In what follows, we assume a hierarchy in the parameters M

N

� M
AB

� yhHi. Then,
because of the Z

2

symmetry, the mass eigenstates in the right-handed neutrino sector are given by,
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The corresponding mass eigenvalues are given by M
±

= M
N

± M
AB

.
Integrating out the right-handed neutrinos, we obtain expressions for the neutrino masses,
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. (4.3)

We see that, even though the right-handed neutrino mass eigenstates consist of an equal mix of visible
and mirror states, the final result for the neutrino mass in the SM sector is exactly as expected from
the familiar Type-I seesaw, up to small corrections that arise as a consequence of mixing between the
A and B sectors. The neutrino mass eigenstates in each sector also contain a small O (M

AB

/M
N

)
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the familiar Type-I seesaw, up to small corrections that arise as a consequence of mixing between the
A and B sectors. The neutrino mass eigenstates in each sector also contain a small O (M
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neutrinos are Majorana, for ✏ = 1/10 and v/f < 1/3, the total mass density in neutrinos is larger than
in the SM. It is important to keep in mind that the bounds in the literature on the sum of neutrino
masses are not directly applicable, since the twin neutrinos are at a lower temperature than the SM
neutrinos. Nevertheless, this constitutes a striking signal of this scenario.

4 Neutrino Masses and Cosmology

In this section we extend the MTH framework to include neutrino masses by incorporating into the
theory a Type-I seesaw. We show that if the mass scale of the right-handed neutrinos is of order a
GeV, this construction o↵ers a simple resolution to the cosmological problems associated with this
class of models along the lines discussed in Section 3, and leads to interesting predictions for upcoming
experiments. We begin in §4.1 with a toy model in which there is only one family of neutrinos and
show that the allowed parameter space is accessible. We later show in §5 that this is also the case in
two classes of models with three families. Since, in detail, the phenomenology depends on whether
or not the neutrino sector respects the Z

2

twin symmetry, we briefly consider the possibility of Z
2

breaking in §4.2.

4.1 Z
2

Symmetric Neutrino Sector with One Family

To illustrate the mechanism, we consider first the case of just one family of SM and twin neutrinos.
The relevant terms in the Lagrangian take the schematic form,
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Here the subscripts A and B denote the SM fields and their twin counterparts respectively. The
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that mixes the right-handed neutrinos in the two
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admixture of neutrinos from the other sector. Provided this mixing is⇠< 10�3 the bounds arising from
the oscillations of active neutrinos into sterile twin states in the early universe [50] can be satisfied.

We focus on a region of parameter space in which the right-handed neutrino mass M
N

is of order
a GeV, while M

AB

is of order an MeV. Then, in order to reproduce neutrino masses in the range from
10�3 � 10�1 eV, y is expected to be of order 10�7 � 10�8.

The right-handed neutrinos N
+

and N
�

can decay into visible sector fermions through the weak
interactions.‡ Both charged and neutral currents contribute. We can estimate the decay width as

�
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Here C
A

involves a sum of order-one numbers that account for the multiplicity of final states, and we
have neglected the masses of the final state particles. The right-handed neutrinos can also decay into
hidden sector fermions through the weak interactions in the twin sector. However, these decay modes
are suppressed because the weak gauge bosons in the twin sector are heavier by a factor (f2/v2) than
the corresponding particles in the SM. The corresponding decay width can be estimated as
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The parameter C
B

again involves a sum over order-one numbers. In the limit that the masses of the
final state particles are neglected, and the same number of decay channels are open in the two sectors,
we have that C

A

= C
B

. We see that decays into twin states are suppressed because the W and Z
gauge bosons in the B sector are heavier by a factor of f2/v2 than in the A sector. Although the
neutrino mass in the B sector is heavier by a factor f2/v2, leading to an enhancement, this is not
su�cient to compensate for the (v2/f2)2 suppression that arises from the hierarchy in gauge boson
masses. The fraction of right-handed neutrino decays into hidden sector states can be estimated as

✏ =
�

N!B

�
N

⇡ v2

f2

. (4.6)

It follows that for v/f of order 1/5, the width into twin states can be as small as a few percent. We
see that even in the absence of any additional breaking of the Z

2

symmetry in the neutrino sector, it
is strightforward to obtain small values of ✏.

We now show that this simple mechanism for neutrino masses can indeed lead to a viable cosmology
using the mechanism described in the previous section. For this to work we must show - (a) that the
right handed neutrinos decouple when they are relativistic, and (b) that the lifetime of right-handed
neutrinos fit within the allowed region of figure 2.

At temperatures below the weak scale the right-handed neutrinos N
+

and N
�

are kept in chemical
equilibrium by the weak interactions through processes such as N + e� ! ⌫ + e�. These process will
eventually freeze out at the temperature T

0

. To estimate this freeze out temperature we can scale up
the freeze out temperature of regular SM neutrinos in standard cosmology as follows. First we note
that as long as N is relativistic

�(N + e� ! ⌫ + e�)

�(⌫ + e� ! ⌫ + e�)
⇠ m

⌫

M
N

. (4.7)

‡They may also decay through the Higgses hA and hB , but these decays are suppressed by small Yukawa couplings
and are numerically subdominant to weak decays.
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(Even smaller ε)

•Hard ℤ₂ breaking in the neutrino sector, y=0

•Soft ℤ₂ breaking in N masses

Following the standard procedure of equating the interaction and the expansion rate, we find that the
decoupling temperature T

0

scales as

T
0

⇠
✓

M
N

m
⌫

◆
1/3

T
⌫,SM

(4.8)

where T
⌫,SM

⇠ 1 MeV is the temperature of neutrino decoupling in the SM. These processes freeze out
at a temperature of order 10 GeV, when the N are still relativistic. Requiring that the right handed
neutrinos decouple when they are relativistic, T

0

> M
N

, we find a constraint

M
N

< 10 GeV

✓
0.01 eV

m
⌫

◆
1/2

, (4.9)

which is easy to satisfy and will, in fact, be less stringent than the requirement on the right handed
neutrino lifetime.

Assuming this constraint is satisfied, as the universe continues to expand, N
+

and N
�

become
nonrelativistic, and eventually come to dominate the energy density of the universe. Finally, when
�

N

⇡ H, the right-handed neutrinos decay, contributing to the entropy of the SM and twin sectors.
Since ✏ is small, the SM is heated up more than the twin sector, allowing the cosmological bounds to
be satisfied. For example, setting ✏ to zero, and combining the equations (3.15) and (3.16) for �N

e↵

with equation (4.4) for the width, requiring �N
e↵

< 0.6 implies

M
N

< 1 GeV

✓
0.01 eV

m
⌫

◆
1/2

, (4.10)

We thus find that in our neutrino model the requirement of the right handed neutrinos to dominate
the energy density of the Universe to su�cient degree before they decay is more stringent that that
for relativistic decoupling. In fact, we find that for a su�ciently light left handed neutrino all three
constraints on the width of the right handed neutrino can be satisfied, as in shown in figure 2, where
the red and green lines which represent the mass-width relation for neutrino masses of 10�4 and 10�6

eV traverse the allowed region.

4.2 Z
2

Violating Neutrino Sector

The discussion above shows that in the case when the neutrino sector respects the Z
2

symmetry,
the branching fraction of N decays into the twin sector is given by ✏ = v2/f2, ignoring the e↵ects of
di↵erent final state particle masses in the two sectors. If, however, the neutrino sector explicitly violates
the Z

2

symmetry, much smaller values of ✏ can be accommodated. Perhaps the most straightforward
way to suppress ✏ is to set the Yukawa couplings of the neutrinos in the B sector to zero. The result of
this would be to turn o↵ the decays of right-handed neutrinos into B sector states, e↵ectively setting
✏ = 0. Although this constitutes a hard breaking of the Z

2

symmetry, since the Yukawa couplings in
Eq. (4.11) are so small, this has only a negligible e↵ect on the Higgs potential.

One can also introduce soft Z
2

breaking in order to suppress ✏. For example, in Eq. (4.11) we
assumed that the mass of N respects Z

2

exactly. We can instead relax this requirement, giving the
two right handed neutrinos di↵erent masses
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N
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B

+ h.c. (4.11)
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This Z
2

breaking e↵ect could either be introduced as a soft breaking “by hand” or as a result of the
existing Z

2

breaking of v < f . For example, the Z
2

symmetric dimension 5 operator

L � 1

⇤

�|H
A

|2N2

A

+ |H
B

|2N2

B

�
(4.12)

leads to a splitting of (f2 � v2)/⇤, once H
A,B

are set to their vevs. Now, the mass eigenstates for
right handed neutrinos will no longer be the maximal mixture of Eq. (4.2), but would rather involve
a mixing angle ✓:

N
1

= cos ✓ N
A

+ sin ✓ N
B

N
2

= cos ✓ N
B

� sin ✓ N
A

, (4.13)

where tan 2✓ = 2M
AB

/(M2

B

� M2

A

). If M
B

> M
A

, N
1

will be lighter than N
2

. The result is that the
lightest right handed neutrino is mostly part of the A sector and its branching ratio into the B sector
✏ will be further suppressed by sin2 ✓. Of course, in this case N

2

would be mostly in the B sector and
would have an enhanced branching to B states, however because it is heavier it can be significantly
shorter-lived and would thus have a lesser impact on cosmology. We leave the detailed analysis of
such a framework for future study and in this work will simply keep in mind that ✏ is a free parameter
which is motivated to be of order v2/f2 but could also be smaller.

5 The ⌫MTH Model

So far we have dealt with a toy model for the neutrino sector, one which has just one flavor. In this
simple case the width of the right handed neutrino is proportional to the mass of the light active
neutrino as in equation (4.4). We found that there is a viable cosmology if the mass of the light
left-handed neutrino is su�ciently small. In generalizing our model to the three neutrino case one
may expect a gain, since now three right handed neutrinos will be decaying preferentially into the
visible sector, leading to a larger asymmetry in energy densities. It remains to be seen whether one
can maintain and improve upon the success of the one flavor model while requiring full agreement with
neutrino oscillation data. In particular, it is interesting to keep track of which light neutrino mass
will be suppressing the width of the various N ’s. Is it the lightest neutrino, the heaviest, or a linear
combination? We will find that the answer depends on the flavor structure of the neutrino sector, and
that all of these are a possibility.

We now discuss the ⌫MTH which extends the framework to three flavors, starting with a general
treatment and then giving two examples which produce di↵erent behaviors. The relevant terms in the
3-flavor Lagrangian take the form,

L � �y
ij

⇣
Li

A

H
A

N j

A

+ Li

B

H
B

N j

B

⌘
� 1

2
(M

N

)
ij

⇣
N i

A

N j

A

+ N i

B

N j

B

⌘
� (M

AB

)
ij

N i

A

N j

B

+ h.c. (5.1)

Here the subscripts i, j = 1, 2, 3 denote the three generations in the gauge eigenbasis. Although
at this stage we could go directly to the mass eigenbasis by diagonalizing the full neutrino mass
matrix, it is more illuminating to proceed in a series of steps. Once again assuming the hierarchy
M

N

� M
AB

� yhHi, and neglecting the small corrections from electroweak symmetry breaking, the
mass matrix for the right-handed neutrinos (N i

A

, N j

B

) takes the form

M =

✓
M

N

M
AB

MT

AB

M
N

◆
. (5.2)
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No longer maximally mixed, lighter N decays preferentially 
to A, heavier to B, but heavier is shorter lived



Does N decouple while relativistic?

⌫
A
,B

N
A
,B

yhH
A
,B i

W
A
,B

N + e ! ⌫ + e
N kept in equilibrium through weak 
interactions e.g.

admixture of neutrinos from the other sector. Provided this mixing is⇠< 10�3 the bounds arising from
the oscillations of active neutrinos into sterile twin states in the early universe [50] can be satisfied.

We focus on a region of parameter space in which the right-handed neutrino mass M
N

is of order
a GeV, while M

AB

is of order an MeV. Then, in order to reproduce neutrino masses in the range from
10�3 � 10�1 eV, y is expected to be of order 10�7 � 10�8.

The right-handed neutrinos N
+

and N
�

can decay into visible sector fermions through the weak
interactions.‡ Both charged and neutral currents contribute. We can estimate the decay width as

�
N!A

⇡ C
A

G2

F

192⇡3

✓
m

⌫,A

M
N

◆
M5

N

. (4.4)

Here C
A

involves a sum of order-one numbers that account for the multiplicity of final states, and we
have neglected the masses of the final state particles. The right-handed neutrinos can also decay into
hidden sector fermions through the weak interactions in the twin sector. However, these decay modes
are suppressed because the weak gauge bosons in the twin sector are heavier by a factor (f2/v2) than
the corresponding particles in the SM. The corresponding decay width can be estimated as

�
N!B

⇡ C
B

G2

F

192⇡3

✓
m

⌫,B

M
N

◆✓
v

f

◆
4

M5

N

. (4.5)

The parameter C
B

again involves a sum over order-one numbers. In the limit that the masses of the
final state particles are neglected, and the same number of decay channels are open in the two sectors,
we have that C

A

= C
B

. We see that decays into twin states are suppressed because the W and Z
gauge bosons in the B sector are heavier by a factor of f2/v2 than in the A sector. Although the
neutrino mass in the B sector is heavier by a factor f2/v2, leading to an enhancement, this is not
su�cient to compensate for the (v2/f2)2 suppression that arises from the hierarchy in gauge boson
masses. The fraction of right-handed neutrino decays into hidden sector states can be estimated as

✏ =
�

N!B

�
N

⇡ v2

f2

. (4.6)

It follows that for v/f of order 1/5, the width into twin states can be as small as a few percent. We
see that even in the absence of any additional breaking of the Z

2

symmetry in the neutrino sector, it
is strightforward to obtain small values of ✏.

We now show that this simple mechanism for neutrino masses can indeed lead to a viable cosmology
using the mechanism described in the previous section. For this to work we must show - (a) that the
right handed neutrinos decouple when they are relativistic, and (b) that the lifetime of right-handed
neutrinos fit within the allowed region of figure 2.

At temperatures below the weak scale the right-handed neutrinos N
+

and N
�

are kept in chemical
equilibrium by the weak interactions through processes such as N + e� ! ⌫ + e�. These process will
eventually freeze out at the temperature T

0

. To estimate this freeze out temperature we can scale up
the freeze out temperature of regular SM neutrinos in standard cosmology as follows. First we note
that as long as N is relativistic

�(N + e� ! ⌫ + e�)

�(⌫ + e� ! ⌫ + e�)
⇠ m

⌫

M
N

. (4.7)

‡They may also decay through the Higgses hA and hB , but these decays are suppressed by small Yukawa couplings
and are numerically subdominant to weak decays.
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Following the standard procedure of equating the interaction and the expansion rate, we find that the
decoupling temperature T

0

scales as

T
0

⇠
✓

M
N

m
⌫

◆
1/3

T
⌫,SM

(4.8)

where T
⌫,SM

⇠ 1 MeV is the temperature of neutrino decoupling in the SM. These processes freeze out
at a temperature of order 10 GeV, when the N are still relativistic. Requiring that the right handed
neutrinos decouple when they are relativistic, T

0

> M
N

, we find a constraint

M
N

< 10 GeV

✓
0.01 eV

m
⌫

◆
1/2

, (4.9)

which is easy to satisfy and will, in fact, be less stringent than the requirement on the right handed
neutrino lifetime.

Assuming this constraint is satisfied, as the universe continues to expand, N
+

and N
�

become
nonrelativistic, and eventually come to dominate the energy density of the universe. Finally, when
�

N

⇡ H, the right-handed neutrinos decay, contributing to the entropy of the SM and twin sectors.
Since ✏ is small, the SM is heated up more than the twin sector, allowing the cosmological bounds to
be satisfied. For example, setting ✏ to zero, and combining the equations (3.15) and (3.16) for �N

e↵

with equation (4.4) for the width, requiring �N
e↵

< 0.6 implies

M
N

< 1 GeV

✓
0.01 eV

m
⌫

◆
1/2

, (4.10)

We thus find that in our neutrino model the requirement of the right handed neutrinos to dominate
the energy density of the Universe to su�cient degree before they decay is more stringent that that
for relativistic decoupling. In fact, we find that for a su�ciently light left handed neutrino all three
constraints on the width of the right handed neutrino can be satisfied, as in shown in figure 2, where
the red and green lines which represent the mass-width relation for neutrino masses of 10�4 and 10�6

eV traverse the allowed region.

4.2 Z
2

Violating Neutrino Sector

The discussion above shows that in the case when the neutrino sector respects the Z
2

symmetry,
the branching fraction of N decays into the twin sector is given by ✏ = v2/f2, ignoring the e↵ects of
di↵erent final state particle masses in the two sectors. If, however, the neutrino sector explicitly violates
the Z

2

symmetry, much smaller values of ✏ can be accommodated. Perhaps the most straightforward
way to suppress ✏ is to set the Yukawa couplings of the neutrinos in the B sector to zero. The result of
this would be to turn o↵ the decays of right-handed neutrinos into B sector states, e↵ectively setting
✏ = 0. Although this constitutes a hard breaking of the Z

2

symmetry, since the Yukawa couplings in
Eq. (4.11) are so small, this has only a negligible e↵ect on the Higgs potential.

One can also introduce soft Z
2

breaking in order to suppress ✏. For example, in Eq. (4.11) we
assumed that the mass of N respects Z

2

exactly. We can instead relax this requirement, giving the
two right handed neutrinos di↵erent masses

L � �1

2
M

NAN2

A

� 1

2
M

NBN2

B

� M
AB

N
A

N
B

+ h.c. (4.11)
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⌫

◆
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T
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(4.8)

where T
⌫,SM

⇠ 1 MeV is the temperature of neutrino decoupling in the SM. These processes freeze out
at a temperature of order 10 GeV, when the N are still relativistic. Requiring that the right handed
neutrinos decouple when they are relativistic, T

0

> M
N

, we find a constraint

M
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< 10 GeV
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0.01 eV

m
⌫

◆
1/2

, (4.9)

which is easy to satisfy and will, in fact, be less stringent than the requirement on the right handed
neutrino lifetime.

Assuming this constraint is satisfied, as the universe continues to expand, N
+

and N
�

become
nonrelativistic, and eventually come to dominate the energy density of the universe. Finally, when
�

N

⇡ H, the right-handed neutrinos decay, contributing to the entropy of the SM and twin sectors.
Since ✏ is small, the SM is heated up more than the twin sector, allowing the cosmological bounds to
be satisfied. For example, setting ✏ to zero, and combining the equations (3.15) and (3.16) for �N
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with equation (4.4) for the width, requiring �N
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< 0.6 implies
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⌫

◆
1/2

, (4.10)

We thus find that in our neutrino model the requirement of the right handed neutrinos to dominate
the energy density of the Universe to su�cient degree before they decay is more stringent that that
for relativistic decoupling. In fact, we find that for a su�ciently light left handed neutrino all three
constraints on the width of the right handed neutrino can be satisfied, as in shown in figure 2, where
the red and green lines which represent the mass-width relation for neutrino masses of 10�4 and 10�6

eV traverse the allowed region.

4.2 Z
2

Violating Neutrino Sector

The discussion above shows that in the case when the neutrino sector respects the Z
2

symmetry,
the branching fraction of N decays into the twin sector is given by ✏ = v2/f2, ignoring the e↵ects of
di↵erent final state particle masses in the two sectors. If, however, the neutrino sector explicitly violates
the Z

2

symmetry, much smaller values of ✏ can be accommodated. Perhaps the most straightforward
way to suppress ✏ is to set the Yukawa couplings of the neutrinos in the B sector to zero. The result of
this would be to turn o↵ the decays of right-handed neutrinos into B sector states, e↵ectively setting
✏ = 0. Although this constitutes a hard breaking of the Z

2

symmetry, since the Yukawa couplings in
Eq. (4.11) are so small, this has only a negligible e↵ect on the Higgs potential.

One can also introduce soft Z
2

breaking in order to suppress ✏. For example, in Eq. (4.11) we
assumed that the mass of N respects Z

2

exactly. We can instead relax this requirement, giving the
two right handed neutrinos di↵erent masses
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NBN2
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A
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Figure 2: The constraints on m
N

� �
N

parameter space. The reheat temperature after N decay
must lie above the neutrino decoupling temperature, taken to be 1 MeV, and below the SM-Twin
decoupling temperature, taken to be 3 GeV. We presents curves of �N

e↵

= 0.6 and we have assumed
the ratio of EW breaking scales f/v = 3. The solid, dotted and dashed curves denote ✏ = 0, 0.05
and 0.08 respectively, and the region with �N

e↵

 0.6 lies below the corresponding curve. The red
and green solid lines correspond to the width of the right handed neutrino in the model described in
section 4, showing that this model produces a viable cosmology.

twin neutrinos from their respective baths, the degrees of freedom in the two sectors are identical,
and consist of the electron, the photon and the three neutrinos. Then the ratio of neutrino number
densities in the two sectors is given by

n
⌫,B

n
⌫,A

=
T 3

B

T 3

A

. (3.17)

Now, comoving entropy conservation implies that

g
⇤B,R

T 3

B,R

g
⇤A,R

T 3

A,R

=
T 3

B

T 3

A

. (3.18)

We therefore find that

n
⌫,B

n
⌫,A

=
g
⇤B,R

T 3

B,R

g
⇤A,R

T 3

A,R

=

✓
g
⇤B,R

g
⇤A,R

◆
1/4

(✏ + R
N

)3/4 . (3.19)

The comoving number density of neutrinos does not change during or after their decoupling from the
thermal bath. Therefore this equation continues to remain true at late times, and can be used to
determine the number density of twin neutrinos.

It follows from this that the ratio of the mass densities in neutrinos satisfies

m
⌫,B

n
⌫,B

m
⌫,A

n
⌫,A

⇡ m
⌫,B

m
⌫,A

✓
�N

e↵

7.4

◆
3/4

. (3.20)

In the absence of additional Z
2

breaking in the neutrino sector, twin neutrinos are expected to be
heavier than their SM counterparts. The reason is that neutrino masses arise as an electroweak
symmetry breaking e↵ect, and the vev of the Twin Higgs is larger than that of the SM Higgs. If
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νMTH

Real model has 3 flavors of neutrinos, and PMNS matrix, CP etc

This Z
2

breaking e↵ect could either be introduced as a soft breaking “by hand” or as a result of the
existing Z

2

breaking of v < f . For example, the Z
2

symmetric dimension 5 operator

L � 1

⇤

�|H
A

|2N2

A

+ |H
B

|2N2

B

�
(4.12)

leads to a splitting of (f2 � v2)/⇤, once H
A,B

are set to their vevs. Now, the mass eigenstates for
right handed neutrinos will no longer be the maximal mixture of Eq. (4.2), but would rather involve
a mixing angle ✓:

N
1

= cos ✓ N
A

+ sin ✓ N
B

N
2

= cos ✓ N
B

� sin ✓ N
A

, (4.13)

where tan 2✓ = 2M
AB

/(M2

B

� M2

A

). If M
B

> M
A

, N
1

will be lighter than N
2

. The result is that the
lightest right handed neutrino is mostly part of the A sector and its branching ratio into the B sector
✏ will be further suppressed by sin2 ✓. Of course, in this case N

2

would be mostly in the B sector and
would have an enhanced branching to B states, however because it is heavier it can be significantly
shorter-lived and would thus have a lesser impact on cosmology. We leave the detailed analysis of
such a framework for future study and in this work will simply keep in mind that ✏ is a free parameter
which is motivated to be of order v2/f2 but could also be smaller.

5 The ⌫MTH Model

So far we have dealt with a toy model for the neutrino sector, one which has just one flavor. In this
simple case the width of the right handed neutrino is proportional to the mass of the light active
neutrino as in equation (4.4). We found that there is a viable cosmology if the mass of the light
left-handed neutrino is su�ciently small. In generalizing our model to the three neutrino case one
may expect a gain, since now three right handed neutrinos will be decaying preferentially into the
visible sector, leading to a larger asymmetry in energy densities. It remains to be seen whether one
can maintain and improve upon the success of the one flavor model while requiring full agreement with
neutrino oscillation data. In particular, it is interesting to keep track of which light neutrino mass
will be suppressing the width of the various N ’s. Is it the lightest neutrino, the heaviest, or a linear
combination? We will find that the answer depends on the flavor structure of the neutrino sector, and
that all of these are a possibility.

We now discuss the ⌫MTH which extends the framework to three flavors, starting with a general
treatment and then giving two examples which produce di↵erent behaviors. The relevant terms in the
3-flavor Lagrangian take the form,

L � �y
ij

⇣
Li

A

H
A

N j

A

+ Li

B

H
B

N j

B

⌘
� 1

2
(M

N

)
ij

⇣
N i

A

N j

A

+ N i

B

N j

B

⌘
� (M

AB

)
ij

N i

A

N j

B

+ h.c. (5.1)

Here the subscripts i, j = 1, 2, 3 denote the three generations in the gauge eigenbasis. Although
at this stage we could go directly to the mass eigenbasis by diagonalizing the full neutrino mass
matrix, it is more illuminating to proceed in a series of steps. Once again assuming the hierarchy
M

N

� M
AB

� yhHi, and neglecting the small corrections from electroweak symmetry breaking, the
mass matrix for the right-handed neutrinos (N i

A

, N j

B

) takes the form

M =

✓
M

N

M
AB

MT

AB

M
N

◆
. (5.2)
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Decorate with indices

•Universal RH neutrinos

•Pseudo µ - τ anarchy [Altarelli, Feruglio, Masina]

5.2 Anarchic Right Handed Neutrinos

In the previous subsection we assumed a flavor universal right handed neutrino sector which allowed
for an arbitrarily narrow species of right handed neutrino, in the limit of a very light left-handed
neutrino mass. This alignment could be guaranteed using a flavor and CP symmetry. One would
expect that if the right handed neutrino masses were flavor anarchic and CP violating this one-to-one
correspondence of right and left handed neutrino mass eigenstates would be spoiled. In this case the
equivalent of equation (5.9) will include a linear combination of all three light neutrino masses which
cannot be arbitrarily small and as a result the right handed neutrinos will all have a minimal generic
width. Does this imply then that our mechanism can only work for the restrictive aligned models? We
now show that this is not the case and even an anarchic neutrino sector can lead to a viable Twin Higgs
cosmology. As an example, we present here a specific example of a seesaw model of neutrino masses
and mixings, based around “pseudo µ⌧ -anarchy” [51, 52], and demonstrate that it can simultaneously
give the correct SM neutrino parameters and realize lifetimes for the RH neutrinos that are su�ciently
long to satisfy the constraints discussed in section 3.

To generate a partially anarchical texture for the neutrino masses the model consists of two
flavons of opposite U(1)

FN

charge, that acquire an equal vev. In the left-handed lepton sector the
first generation is taken to have U(1) charge 2, while the second and third generation have no charge.
In the right-handed neutrino sector the first and second generation have charges ±1 respectively, while
the third generation is neutral§. This results in textures of the form

m
D

= m
D

0

@
�3 � �2

� � 1
� � 1

1

A , M
N

= M
N

0

@
�2 1 �
1 �2 �
� � 1

1

A . (5.10)

The Dirac mass term for the B sector is f/v larger than in the A sector. We then generate random
matrices with each entry, m

ij

, picked uniformly from [0.5, 2]⇥t
ij

where t
ij

is the corresponding texture
entry. In addition each entry acquires a random phase from 0 to 2⇡, and M

N

is symmetrised. Following
[52] we take � ⇡ 0.35. After diagonalising the full neutrino mass matrix, we require that the resulting
neutrino mixing parameters and mass splittings for the SM neutrinos are within 3� of the best fit
values presented in the PDG [53]:

2.23⇥ 10�3 eV2  �m2

atm

 2.61⇥ 10�3 eV2

6.99⇥ 10�5 eV2  �m2

sol

 8.18⇥ 10�5 eV2

0.259  sin2 ✓
12

 0.359

0.374  sin2 ✓
23

 0.628

0.0176  sin2 ✓
13

 0.0295 . (5.11)

We only consider the case of normal ordering of the neutrino masses where �m2

atm

⌘ m2

3

�(m2

1

+m2

2

)/2
and�m2

sol

⌘ m2

2

�m2

1

are both positive. The active neutrinos have masses that scale as m
⌫

⇠ m2

D

/M
N

so that any particular realisation of the textures that satisfies (5.11) is actually a one-parameter family
of solutions, where m

D

! r1/2m
D

and M
N

! rM
N

.
Having chosen viable neutrino models we calculate the widths of the right handed neutrino states

(see Appendix A) and estimate �N
e↵

following the numerical procedure described in Appendix B.
This procedure takes the decay of all right handed neutrinos into account. The results are presented

§Note that we neglect the tiny e↵ect of the MAB terms on the masses and mixings of the light neutrinos. In the
notation of section 3 N = N

±

.
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LH and RH neutrinos aligned

This mass matrix can be block-diagonalized by means of an orthogonal rotation bringing it into the
form,

✓
M

N

+ 1

2

(M
AB

+ MT

AB

) 0
0 M

N

� 1

2

(M
AB

+ MT

AB

)

◆
= OTMO . (5.3)

This rotation takes the right-handed neutrino states from the gauge eigenbasis to the approximate
sterile neutrino mass eigenstates N i

±

= 1

p

2

(N i

A

± N i

B

), the natural generalization of the one-flavor
case. Electroweak symmetry breaking then induces small o↵-diagonal terms that mix the left-handed
and right-handed neutrinos. At leading order, this gives the active neutrino mass matrices

(m
⌫,A

)
ij

= �1

2
(✓

A

)
ik

(M
N

)
kl

(✓
A

)T
lj

⇢
1 +O

✓
M

AB

M
N

◆�

(m
⌫,B

)
ij

= �1

2
(✓

B

)
ik

(M
N

)
kl

(✓
B

)T
lj

⇢
1 +O

✓
M

AB

M
N

◆�
. (5.4)

where e.g. (✓
A

)
ij

= y
ik

(M�1

N

)
kj

hH
A

i and the right-handed neutrino mass matrices are only shifted at
O(m

⌫

/M
N

). The matrices m
⌫,A

, m
⌫,B

and M
N

can then be fully diagonalized by matrices U
⌫,A

, U
⌫,B

,
and U

N

, respectively, where U
⌫,A

can be identified with the PMNS matrix in a basis where the charged
lepton mass matrix is already diagonal. In this expansion, the mixing angles between sterile neutrinos
and active neutrino gauge eigenstates in the A and B sectors are given by

(⇥
A

)
ij

' (✓
A

)
ik

(U
N

)
kj

= y
ik

(M�1

N

)
kl

(U
N

)
lj

hH
A

i (5.5)

(⇥
B

)
ij

' (✓
B

)
ik

(U
N

)
kj

= y
ik

(M�1

N

)
kl

(U
N

)
lj

hH
B

i (5.6)

with corrections of order O(M
AB

/M
N

). Note that, as in the single-family case, these mixing angles
are naturally O(

p
m

⌫

/M
N

). These mixing angles, squared and summed over the light neutrino index,
enter the width of the right handed neutrinos. We reserve a detailed discussion of the decay widths
for Appendix A. We now consider two possible limits for the right handed neutrino sector - one in
which right handed neutrinos are universal and thus aligned with the light neutrinos, and another in
which they are anarchic.

5.1 Universal Right Handed Neutrinos

A particularly simple limit of the three-family setup described above is one in which both M and M
AB

are universal and y is real,

M
N

/ 1 and M
AB

/ 1 and y
ij

2 R . (5.7)

This limit is protected by a CP symmetry in the lepton sector, and an SO(3) symmetry which is only
broken by the spurion y

ij

. We will still maintain the hierarchy M
N

� M
AB

� yhHi for simplicity.
In this case the mass basis for right and left handed neutrinos are aligned and the decay of each right
handed neutrino is suppressed by a definite left handed neutrino mass. In the language of the previous
subsection, in this limit the U

N

matrices are the identity and the ✓ matrices are simply diagonal
matrices times the PMNS matrix (with �

CP

= 0),

✓
A

= diag

2

4

s
mi

⌫,A

M
N

3

5U
⌫,A

. (5.8)
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Figure 3: �N
e↵

as a function of the mass of the lightest left handed SM neutrino in the universal
right handed neutrino limit. Curves are shown for right handed neutrinos at 1, 2, and 5 GeV. Left
plot is for ✏ = 0 while the right plot is for ✏ = 0.05.

In the limit of massless decay products the PMNS matrix will drop out of the decay width once the
amplitude is squared due to unitarity. As a result, the decay rates of the right handed neutrinos takes
a form which is very similar to equation (4.4)

�
Ni!A

⇡ C
A

G2

F

192⇡3

 
mi

⌫,A

M
N

!
M5

N

. (5.9)

where the decay of each N
i

is suppressed by its own light neutrino mass mi

⌫,A

. We see that in this
universal case, as the lightest SM neutrino is taken to approach zero mass, one right handed neutrino
would become arbitrarily narrow. In particular, we find that we are able to raise the RH neutrino
mass M

N

while keeping the width of one RH neutrino fixed, thus moving to the right in the M
N

-
�

N

plane for this state, staying within the allowed region in figure 2. When we do so, the width
of the other two right hand neutrinos cannot be held fixed because the masses of the corresponding
left handed neutrinos cannot be taken to zero without coming in conflict with the measured mass
di↵erence measured in oscillation.

In the limit that two right handed neutrinos decay early and do not a↵ect the cosmology, we thus
find that the limit of (5.7) e↵ectively reproduces the results of the single family result of section 4.1
and figure 2. However, even in this case it is possible for all right handed neutrinos to contribute to
the temperature di↵erence between the A and the B sectors. In figure 3 we show the contribution
to �N

e↵

from twin states as a function of the lightest SM neutrino mass. In the figure �N
e↵

was
estimated numerically, going beyond the instantaneous decay approximation and accounting for the
decays of the various N ’s in di↵erent times, as described in Appendix B. We assume that the B sector
particles are three times heavier than their twins in the SM, i.e. f/v = 3. We consider two choices
for the branching ratio into the twin sector: ✏ = 0.05, which is slightly smaller than expected from Z

2

alone, and the limiting case of ✏ = 0 where the only contribution to �N
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comes from the primeval
energy density, R
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. We find that there is ample regions of parameter space where �N
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is acceptably
small.
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Figure 3: �N
e↵

as a function of the mass of the lightest left handed SM neutrino in the universal
right handed neutrino limit. Curves are shown for right handed neutrinos at 1, 2, and 5 GeV. Left
plot is for ✏ = 0 while the right plot is for ✏ = 0.05.
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νMTH—Anarchic

Froggatt Nielsen charges of LH and RH neutrinos s.t.

5.2 Anarchic Right Handed Neutrinos

In the previous subsection we assumed a flavor universal right handed neutrino sector which allowed
for an arbitrarily narrow species of right handed neutrino, in the limit of a very light left-handed
neutrino mass. This alignment could be guaranteed using a flavor and CP symmetry. One would
expect that if the right handed neutrino masses were flavor anarchic and CP violating this one-to-one
correspondence of right and left handed neutrino mass eigenstates would be spoiled. In this case the
equivalent of equation (5.9) will include a linear combination of all three light neutrino masses which
cannot be arbitrarily small and as a result the right handed neutrinos will all have a minimal generic
width. Does this imply then that our mechanism can only work for the restrictive aligned models? We
now show that this is not the case and even an anarchic neutrino sector can lead to a viable Twin Higgs
cosmology. As an example, we present here a specific example of a seesaw model of neutrino masses
and mixings, based around “pseudo µ⌧ -anarchy” [51, 52], and demonstrate that it can simultaneously
give the correct SM neutrino parameters and realize lifetimes for the RH neutrinos that are su�ciently
long to satisfy the constraints discussed in section 3.

To generate a partially anarchical texture for the neutrino masses the model consists of two
flavons of opposite U(1)

FN

charge, that acquire an equal vev. In the left-handed lepton sector the
first generation is taken to have U(1) charge 2, while the second and third generation have no charge.
In the right-handed neutrino sector the first and second generation have charges ±1 respectively, while
the third generation is neutral§. This results in textures of the form
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The Dirac mass term for the B sector is f/v larger than in the A sector. We then generate random
matrices with each entry, m

ij

, picked uniformly from [0.5, 2]⇥t
ij

where t
ij

is the corresponding texture
entry. In addition each entry acquires a random phase from 0 to 2⇡, and M

N

is symmetrised. Following
[52] we take � ⇡ 0.35. After diagonalising the full neutrino mass matrix, we require that the resulting
neutrino mixing parameters and mass splittings for the SM neutrinos are within 3� of the best fit
values presented in the PDG [53]:

2.23⇥ 10�3 eV2  �m2

atm

 2.61⇥ 10�3 eV2

6.99⇥ 10�5 eV2  �m2

sol

 8.18⇥ 10�5 eV2

0.259  sin2 ✓
12

 0.359

0.374  sin2 ✓
23

 0.628

0.0176  sin2 ✓
13

 0.0295 . (5.11)

We only consider the case of normal ordering of the neutrino masses where �m2
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⌘ m2
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and�m2

sol

⌘ m2
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are both positive. The active neutrinos have masses that scale as m
⌫

⇠ m2

D

/M
N

so that any particular realisation of the textures that satisfies (5.11) is actually a one-parameter family
of solutions, where m

D

! r1/2m
D

and M
N

! rM
N

.
Having chosen viable neutrino models we calculate the widths of the right handed neutrino states

(see Appendix A) and estimate �N
e↵

following the numerical procedure described in Appendix B.
This procedure takes the decay of all right handed neutrinos into account. The results are presented

§Note that we neglect the tiny e↵ect of the MAB terms on the masses and mixings of the light neutrinos. In the
notation of section 3 N = N

±

.
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Figure 4: The range of �N
e↵

as a function of the lightest right handed neutrino mass which is
produced in an ensemble of phenomenologically viable anarchic models (see the text for details). We
have taken ✏ = 0 and 0.05 in the left and right panels respectively. The dashed line shows the result
of a particular model, chosen arbitrarily.

in figure 4 in which we show the range of �N
e↵

in the ensemble of about 180 viable models found in
our scan. The dashed line shows the result of a particular model, chosen arbitrarily. As expected, we
see that models that have viable neutrino masses and mixings can also produce a viable cosmology.

6 Conclusions

In summary, we have proposed a simple solution to the cosmological challenges of the MTH scenario.
We consider a framework in which there is a new weakly coupled particle species N that decouples from
the thermal bath while still relativistic. As the universe expands, these particles eventually become
nonrelativistic and come to dominate the energy density of the universe, before decaying. These decays
are assumed to occur at late times, after the SM and twin sectors have decoupled. Furthermore, the N
are assumed to decay preferentially into SM states rather than into twin states. The resulting energy
density in the SM sector is then higher than in the twin sector, allowing the cosmological bounds on
dark radiation to be satisfied.

We then consider a minimal extension of the original MTH that includes neutrino masses, the
⌫MTH model, and show that it naturally possesses the necessary ingredients to realize these ideas. In
the ⌫MTH both the SM and mirror neutrinos acquire masses through the familiar seesaw mechanism,
but with a low right-handed neutrino mass scale of order a few GeV. In this construction, the right-
handed neutrinos play the role of the late-decaying species, and their out-of-equilibrium decays heat
the SM and twin sector baths at late times. Since the weak gauge bosons of the SM are lighter than
their twin counterparts, decays to SM states are preferred, with the result that the visible sector is
left at a higher temperature than the twin sector. The contribution of the twin sector to the radiation
density in the early universe is therefore suppressed, allowing the current BBN and CMB bounds
to be satisfied. However, this e↵ect is expected to be large enough to be discovered in future CMB
experiments. Furthermore, the twin neutrinos are significantly heavier than their standard model
counterparts, resulting in a sizable contribution to the overall mass density in neutrinos that can be
detected in upcoming experiments designed to probe the large scale structure of the universe.
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Conclusions

•Simple solution to cosmological problems of original MTH
•Weakly coupled new state decouples early and decays late
•GeV scale RH neutrinos can simultaneously generate SM 

neutrino masses and fix MTH cosmology …. νMTH

•New contributions to relativistic d.o.f. and neutrino’s
•Observable in CMS-S4 and LSS measurements

•c.f. N(=2)Naturalness
•Connecting cosmology to Naturalness solution
•Long lived N’s at colliders?



Backup



•Real models have 3 neutrinos with different masses & widths
•Decays not instantaneous
•Multiple thresholds in both sectors
•A, B baths and N’s:

Figure 5: Left: The partial width of right-handed neutrino N
i

into Standard Model states assuming
(⇥

A

)
i1

= 1 and all other mixing angles are zero. Right: The e↵ect of phase space corrections due to
finite bottom, charm, and tau masses, illustrated via the ratio of partial widths with (⇥

A

)
i3

= 1 and
(⇥

A

)
i1

= 1, in each case assuming all other mixing angles are zero.

the lightest SM neutrino can be arbitrarily long lived, but we will not consider neutrino masses that
cause N to decay after BBN, T ⇠ 1 MeV. In the pseudo µ⌧ -anarchy model, section 5.2, there are three
sterile neutrinos which can decay to all three SM neutrinos. This anarchic mixing typically results in
masses and lifetimes that can di↵er by up to an order of magnitude.

Naively one might expect the result is dominated by the longest lived right-handed neutrino.
However, in general none of the decays can be ignored and instead a more careful analysis must be
carried out. As the N ’s do not decay instantaneously, the periods over which the majority of each
species decays can overlap. When each N decays it reheats the A and B sectors and the universe
becomes less matter dominated. Since a ⇠ t2/3 during matter domination whereas a ⇠ t1/2 during
radiation domination, it takes longer for each remaining N to again dominate the evolution of the
universe. Furthermore, during the decay period the A and B sectors are crossing various particle
thresholds at di↵erent times. Rather than attempt an analytic result we will study the evolution of
the universe numerically.

The system we wish to study is that of three massive neutrinos decaying into two baths of
relativistic particles in an expanding universe, whose scale factor is a(t). Since the number of relativistic
degrees of freedom changes with time as various species in each bath drop out of equilibrium, the baths
are most conveniently described by the entropy of the relativistic particles in the A (B) sector, S
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In the last steps of equation (B.1) we have used the fact since that most of the decays occur when the
N

i

are out of equilibrium and non-relativistic, the equilibrium number density can be ignored, neq
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⇡ 0.
Furthermore, the thermally averaged width is hE�
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In the last steps of equation (B.1) we have used the fact since that most of the decays occur when the
N

i

are out of equilibrium and non-relativistic, the equilibrium number density can be ignored, neq

i

⇡ 0.
Furthermore, the thermally averaged width is hE�

i

i ⇡ M
Ni�i

. Making the same approximations the
evolution of the energy densities in the sterile neutrino sector is,
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. (B.2)
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Start w/ thermal abundance at largest N decoupling temperature
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