Measurement of the $t\bar{t}$ spin correlations and top quark polarization in dileptonic channel

AJEETA KHATIWADA

PURDUE UNIVERSITY

3rd PIKIO MEETING DATE: 03/04/17

Introduction

• Heaviest fundamental particle: $m_t = 173.34\pm0.76$ GeV [arXiv: 1403.4427].

- Short lifetime ~10⁻²⁵ s.
 - Decays before hadronization takes place.
 - Spins cannot decorrelate and the spin info. gets passed on to decay particles.
- Special role in EWSB?: $\lambda_t \sim 1$.

Study of top properties:

- ★ provides precision test of top quark production and decay, and
- ★ provides constraint for BSM models with resonances decaying to top and SUSY stops produced via similar mechanism as SM top.

Top quark spin correlation

- ★ In SM: Top quarks
 produced by strong
 interaction are
 unpolarized but QCD
 causes top-quark spins
 to be correlated at
 production.
- ★ BSM scenarios can also cause tops to be polarized in addition to modifying spin correlation.
- ★ Therefore, we want to measure entire spin density matrix, which includes the polarization.

At low(high) invariant mass, top anti-top pair production is dominated by like(unlike) helicity gluon fusion.

Probing the spin correlation

- Time taken for top quark to change its spin by radiating a gluon > lifetime of top. Decay products carry the top spin information.
- The $t\bar{t}$ differential cross section:

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{+} d\cos\theta_{-}} = \frac{1}{4} \left(1 + B_{1} \cos\theta_{+} + B_{2} \cos\theta_{-} - C \cos\theta_{+} \cos\theta_{-} \right)$$

• B_1, B_2 , and C are the polarization and spin correlation in quantization axis \hat{a} and \hat{b} .

 $C(\hat{\mathbf{a}}, \hat{\mathbf{b}}) = \kappa_{\ell}^2 \; \frac{\sigma(\uparrow \uparrow) + \sigma(\downarrow \downarrow) - \sigma(\uparrow \downarrow) - \sigma(\downarrow \uparrow)}{\sigma(\uparrow \uparrow) + \sigma(\downarrow \downarrow) + \sigma(\uparrow \downarrow) + \sigma(\downarrow \uparrow)} \qquad \qquad \swarrow \; \nu$

- κ_l is the spin analyzing power (of charged lepton). +1.0 for charged lepton/down quark, -0.41 for bottom quark, -0.31 for up quark and neutrino in top decays.
- θ_i is the angle between spin quantization direction and momentum of decay particle in the rest from of its parent top.

Top quark pair decay modes

★ All-hadronic

- * Largest BR
- * Large QCD Background
- * Event fully constrained

★ <u>Semi-leptonic</u>

- * High BR
- * Medium background
- * Event constrained

★ Dileptonic

- * Small BR
- * S/B good
- * Event under-constrained

Small BR is okay - Large $\sigma_{t\bar{t}}$ at 13 TeV ~ 830 pb.

Observables

* Azimuthal angle between two leptons $\Delta \phi(l^+l^-)$ in the final state of ttbar decay allows to probe spin correlation without reconstructing ttbar system.

- ★ The $\Delta \phi(l^+l^-)$ variable has been used in almost all past analyses: CMS/ATLAS 7/8 TeV.
- ★ The parton level differential cross section is estimated by unfolding the background subtracted angular distributions.
- ★ Corresponding asymmetries are also estimated at parton level:

$$A_{\Delta\phi} = \frac{N(\Delta\phi_{\ell^{+}\ell^{-}} > \pi/2) - N(\Delta\phi_{\ell^{+}\ell^{-}} < \pi/2)}{N(\Delta\phi_{\ell^{+}\ell^{-}} > \pi/2) + N(\Delta\phi_{\ell^{+}\ell^{-}} < \pi/2)}$$

Observables

- ★ With the ttbar system fully reconstructed:
 - Opening angle (ϕ) between the lepton momenta measured in their parent top quarks' rest frame is sensitive to spin correlation.
 - $\cos\theta_l$ gives information about the top quark spin where θ_l is the angle of a charged lepton in the rest frame of its parent top quark(antiquark) in a particular basis.
 - Top quark polarization is related to A_p :

$$A_p = \frac{N[\cos \theta_l > 0] - N[\cos \theta_l < 0]}{N[\cos \theta_l > 0] + N[\cos \theta_l < 0]}$$

- $\cos \theta_{l^+} \cos \theta_{l^-}$ gives information about the spin correlation.
- $A_{C_1C_2}$ is related to correlation strength which is dependent on the choice of quantization axis. $A_{c_1c_2} = \frac{N(c_1c_2>0) N(c_1c_2<0)}{N(c_1c_2>0) + N(c_1c_2<0)}$

Quantization axis

Phys. Rev. D **95**, 011101(R)

★ Commonly used basis:

* <u>Beam</u> - direction of one of the beams in lab frame (good at Tevatron).

* Helicity - direction of the flight of top(antitop) in the pair's CM frame. (good at LHC).

* Transverse - perpendicular to plane defined by proton and parent top direction (higher for Tevatron).

* Off-diagonal - axis w.r.t which the spins of top and anti-top produced by qqbar annihilation are 100 % correlated (No such basis for gg).

Combined e+jets and mu+jets for I+3jets events.

Typical event selection

- Signal characterized by
 - 2 oppositely charged isolated leptons (also from τ lepton decay)
 - 2 jets with at least one b-tagged jet.
- Reject DY by applying lepton invariant mass around Z peak and less than 20 GeV.
- Cuts on missing E_T to further suppress DY in the case of same flavor lepton final states.
- Because of two neutrinos in the final state, kinematics reconstruction is done by applying constraints from from missing E_T, two W masses (obtained from generated mass) and two top quark masses (172.5GeV).

CMS 8 TeV results (helicity basis)

- Measured spin correlation and polarization distributions were found to be in agreement with the SM prediction.
- Spin correlation/polarization coefficients were measured in helicity basis: $C_{hel} = 0.278 + /-0.084$, P = -0.022 + /-0.058.

CMS 8 TeV results (helicity basis)

 Asymmetry as a function of invariant mass, pT and pseudorapidity of the ttbar system were also studied and found to be consistent with SM.

 Spin correlation as a function of mass related variables can help constrain the top quark partner phase-space.

BSM search via precision measurements of top-quark pairs

★Stop decays in both the top quark and the chargino channels are very sensitive to spin-correlations and polarization information.

 \star $t\bar{t}$ events can be distinguished from SM $t\bar{t}$ events through an increase of the measured $t\bar{t}$ cross section.

Search for dark matter with top spin correlation

Associated production of dark matter with $t\bar{t}$ pair can alter the $t\bar{t}$ spin correlation.

Parameter space for DMnucleon scattering cross section that is not well constrained by direct searches may be constrained with searches having $t\bar{t}$ + missing E_T in the final state at the LHC.

Summary of previous measurements

Likelihood fit of the angular distributions using SM template and no correlation template:

$$f_{SM} = \frac{N_{SM}^{t\bar{t}}}{N_{SM}^{t\bar{t}} + N_{UnCorr}^{t\bar{t}}}$$

- f_{SM} = 1: Strength of spin correlations same as SM prediction.
- $f_{SM} = 0$: Uncorrelated events.
- New: Most precise measurement in the lepton+jet channel:
 f_{SM}=0.72 +/- 0.08 +/- 0.15 compatible with SM with 2.2 sigma and with uncorrelated with 2.9 sigma. [Phys. Lett. B 758 (2016) 321].

Plans for 2016 dataset at 13TeV

- Include more observables to probe all the independent coefficient functions of top-spin dependent parts of the $t\bar{t}$ production spin density matrices as described in Bernreuther et. al. [JHEP12(2015)026].
- Likelihood fit of the spin-correlation distributions with templates from SUSY+SM or other BSM models+SM in order to constrain new physics scenarios.
- 2D differential cross section measurements to probe for new physics and better handle on systematics.

THANK YOU!

Kinematic reconstruction

- ★ Because of two neutrinos in the final state, kinematics is not constrained.
- ★ Constraints from missing transverse energy in the transverse direction, two W masses (obtained from generated mass) and two top quark masses (172.5GeV).
- ★ Set of six independent kinematic equations with six unknowns is constructed.
- ★ Solution proposed by L. Sonnenschein results in a quartic equation for one of the neutrino momenta components, which can have up to four solutions [Phys. Rev. D 73, 054015 (2006)].
- ★ The solution with lowest ttbar invariant mass can be taken as solution has been found through simulation to give correct solution 60% of the time.
- ★ It has already been used in CMS-TOP-12-028, CMS-TOP-14-013 and CMS-TOP-16-011.
- ★ Other methods such as neutrino weighting technique (ATLAS 7TeV) [Phys. Rev. Lett. 80, 2063-2068] have been used in the past.