$n - \bar{n}$ transitions

Xinshuai Yan

Department of Physics and Astronomy University of Kentucky, Lexington, KY

March 4, 2017
Based on Susan Gardner and X. Yan,
Phys. Rev. D93, 096008 (2016) arXiv:1602.00693
and ongoing work

1 / 24

Why $n - \bar{n}$ transitions?

Three ingredients needed for explanation of baryon asymmetry in our universe (BAU):

- Baryon number violation (฿);
- C and CP violation;
- departure from thermal equilibrium.

[Sakharov 1967]

Two kinds of β phenomena :

- $|\Delta B| = 1$: $\Lambda_{p \ decay} \ge 10^{15} \text{ GeV}$;
- $|\Delta B| = 2$: $\Lambda_{n\bar{n}} \ge 10^{5.5}$ GeV.
- $n-\bar{n}$ oscillations may be also connected to \not [Marshak and Mohapatra (1980), Babu and Mohapatra (2015)]

Challenges of observing $n - \bar{n}$ oscillations

Neutron is spin $\frac{1}{2}$ particle.

CPT and Lorentz symmetry is assumed,

$$H = \begin{pmatrix} M - \mu \cdot \mathbf{B} & \delta \\ \delta & M + \mu \cdot \mathbf{B} \end{pmatrix}$$

$$\Rightarrow P_{n \to \bar{n}}(t) \simeq \frac{\delta^2}{2(\mu \cdot \mathbf{B})^2} [1 - \cos(2\mu Bt)] \exp(-\lambda t)$$

where $\lambda^{-1} = \tau_n = 0.88 \times 10^3$ s. So external magnetic fields suppress transition, unless $t \ll (2\mu B)^{-1}$ (quasi-free condition).

[Marshak and Mohapatra (1980); Cowsik and Nussinov (1981); Phillips II et al (2014)] Same conclusion for matter effect. \Rightarrow explore alternative methods.

Using $n-\bar{n}$ oscillation to set limits on the strength of Lorentz invariance violation has also been considered. [Babu and Mohapatra (2015)]

Spin offers a new path?

CPT symmetry guarantees that $n(\uparrow)$ and $\bar{n}(\downarrow)$ have the same energy.

⇒ A hint: spin might be important.

Once the fermion anticommutation relation is taken into account, there are 3 non-trivial lowest mass dimension operators:

- $n^{\top}Cn+$ h.c., $n-\bar{n}$ oscillation operator, always "quenched";
- $n^{\top}C\gamma^5 n$ + h.c., does not contribute to $n\bar{n}$ oscillation; [Berezhiani and Vainshtein, (2015), Fujikawa and Tureanu, (2015)]
- $n^{\top} C \gamma^{\mu} \gamma^5 n \partial^{\nu} F_{\nu\mu} + \text{h.c.}$, [Berezhiani and Vainshtein (2015)]

The external source, $j_{\mu}=\partial^{\nu}F_{\nu\mu}$, requires the consideration of spin degrees of freedom of n and \bar{n} .

Consider the process $n(p_1) + n(p_2) \rightarrow \gamma^*(k)$. Crossing yields $n - \bar{n}\gamma^*$ transition.

Phases are restricted!

When we checked the CPT transformation properties of these operators, we found that phases of discrete symmetry transformations, such as **P** and **CPT** are not arbitrary! In fact, $\eta_c \eta_p \eta_t$ is imaginary and η_p is imaginary.

This was noticed before [Feinberg and Weinberg(1959), P. A. Carruthers(1971), Kayser and Goldhaber(1983), Kayser (1984)], but considered as a property of Majorana fields.

We find it is also true for Dirac fields with *B-L violation*, and hence believe it is associated with discrete symmetries themselves. [SG and Yan (2016)]

Now we focus on the " j_{μ} " operator.

Connect $n - \bar{n}$ conversion with oscillation

Dimension analysis of the j_{μ} operator shows that

$$\alpha(n^T C \gamma^{\mu} \gamma_5 n j_{\mu} + \text{h.c.})$$

with $[\alpha] = -2$.

We want to evaluate the mass scale of this suppression.

Note that quarks are charged under QED and QCD. So the simplest way to explore the connection is through QED.

Also a difference between u and d is necessary to make B-L violation appear in a physically consistent way. [S.G and Yan (2016)]

Quark-level $n - \bar{n}$ oscillation: $\Lambda_{OCD} \ll \Lambda \ll \Lambda_{RSM}$

6-fermion $n - \bar{n}$ oscillation operators

The observable comes from three inputs:

$$rac{1}{ au_{nar{n}}} = \delta = c_{BSM} c_{QCD} \langle ar{n} | O | n
angle$$
, [M. Buchoff et al (2012)]

where c_{BSM} is the running of the BSM theory to the weak interaction scale, c_{QCD} is the QCD running from weak to the nuclear scale, and $\langle \bar{n}|O|n\rangle$ is the matrix element of the 6-fermion $n-\bar{n}$ oscillation operators. Both c_{BSM} and c_{QCD} have been analyzed in, e.g., [Winslow and Ng (2010), Buchoff and Wagman (2016)].

The operator $O = \sum_{i,\chi} \lambda_{m,\chi}(O_m)_{\chi}$ and there are 18 independent operators if $U(1)_{em}$ and $SU(3)_{color}$ symmetries are considered.

$$\begin{array}{lcl} (O_{1})_{\chi_{1}\chi_{2}\chi_{3}} & = & [u_{\chi_{1}}^{\top\alpha}Cu_{\chi_{1}}^{\beta}][d_{\chi_{2}}^{\top\gamma}Cd_{\chi_{2}}^{\delta}][d_{\chi_{3}}^{\top\rho}Cd_{\chi_{3}}^{\sigma}](T_{s})_{\alpha\beta\gamma\delta\rho\sigma}, \\ (O_{2})_{\chi_{1}\chi_{2}\chi_{3}} & = & [u_{\chi_{1}}^{\top\alpha}Cd_{\chi_{1}}^{\beta}][u_{\chi_{2}}^{\top\gamma}Cd_{\chi_{2}}^{\delta}][d_{\chi_{3}}^{\top\rho}Cd_{\chi_{3}}^{\sigma}](T_{s})_{\alpha\beta\gamma\delta\rho\sigma}, \\ (O_{3})_{\chi_{1}\chi_{2}\chi_{3}} & = & [u_{\chi_{1}}^{\top\alpha}Cd_{\chi_{1}}^{\beta}][u_{\chi_{2}}^{\top\gamma}Cd_{\chi_{2}}^{\delta}][d_{\chi_{3}}^{\top\rho}Cd_{\chi_{3}}^{\sigma}](T_{s})_{\alpha\beta\gamma\delta\rho\sigma}, \end{array}$$

with
$$(T_s)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\gamma}\epsilon_{\sigma\beta\delta} + \epsilon_{\sigma\alpha\gamma}\epsilon_{\rho\beta\delta} + \epsilon_{\rho\beta\gamma}\epsilon_{\sigma\alpha\delta} + \epsilon_{\sigma\beta\gamma}\epsilon_{\rho\alpha\delta}$$

and $(T_a)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\sigma\alpha\beta}\epsilon_{\rho\gamma\delta}$. [Rao and Shrock (1982)]

6-fermion $n - \bar{n}$ oscillation operators

The number of independent operators can be reduced to 6, since they are expected to be invariant under $SU(2)_L \times U(1)_Y$.

These are

$$(O_1)_{RRR}$$
, $(O_2)_{RRR}$, $(O_3)_{RRR}$
 $2(O_3)_{LRR}$, $4(O_3)_{LLR}$, $4((O_1)_{LLR} - (O_2)_{LLR})$.

The matrix element $\langle \bar{n}|O|n\rangle$ can be calculated in MIT bag model [Rao and Shrock (1982)] or through lattice QCD [M. Buchoff et al (2012)] .

EM dressing

Consider the EM interaction with these quark-level operators:

e.g. consider $(O_1)_{\chi_1\chi_2\chi_3}$: Calculate the amplitude of this process and write down the associated effective operator.

$$(O_{cov}^{1})_{\chi_{1}\chi_{2}\chi_{3}} = j_{\mu} \frac{\lambda_{\chi_{1}\chi_{2}\chi_{3}}^{1}}{q^{2}} \left[\frac{-4e}{3} \frac{m_{u}}{p^{2} - m_{u}^{2}} [u_{-\chi_{1}}^{\top \alpha} C \gamma^{\mu} u_{\chi_{1}}^{\beta}] [d_{\chi_{2}}^{\top \gamma} C d_{\chi_{2}}^{\delta}] [d_{\chi_{3}}^{\top \rho} C d_{\chi_{3}}^{\sigma}] \right]$$

$$+ \frac{2e}{3} \frac{m_{d}}{p^{2} - m_{d}^{2}} [u_{\chi_{1}}^{\top \alpha} C u_{\chi_{1}}^{\beta}] [d_{-\chi_{2}}^{\top \gamma} C \gamma^{\mu} d_{\chi_{2}}^{\delta}] [d_{\chi_{3}}^{\top \rho} C d_{\chi_{3}}^{\sigma}]$$

$$+ \frac{2e}{3} \frac{m_{d}}{p^{2} - m_{d}^{2}} [u_{\chi_{1}}^{\top \alpha} C u_{\chi_{1}}^{\beta}] [d_{\chi_{2}}^{\top \gamma} C d_{\chi_{2}}^{\delta}] [d_{-\chi_{3}}^{\top \rho} C \gamma^{\mu} d_{\chi_{3}}^{\sigma}]] (T_{s})_{\alpha\beta\gamma\delta\rho\sigma}$$

 $n - \bar{n}$ transitions

Matrix elements in MIT bag model

Calculate the matrix elements in the MIT bag model $(m_u = m_d = 0.108 \text{GeV})$:

Factor out the common factor $N^6p^{-3}/(4\pi)^2$ and list the matrix elements of $n-\bar{n}$ oscillation and conversion operators below:

Table 1: Matrix element of $n - \bar{n}$ oscillation operators

O_1 _{RRR}	$\langle O_1 \rangle_{LLR}$	$\langle O_1 \rangle_{RLL}$	$\langle O_2 \rangle_{RRR}$	$\langle O_2 \rangle_{LLR}$	$\langle O_2 \rangle_{RLL}$	$\langle O_3 \rangle_{RRR}$	$\langle O_3 \rangle_{LRR}$	$\langle O_3 \rangle_{LLR}$
-5.33	-4.17	-0.666	1.33	1.92	0.167	2.22	-2.72	2.03

The pattern of these matrix elements is consistent with Lattice QCD calculation.

Table 2: Matrix element of $n - \bar{n}$ conversion operators

$\langle \mathcal{O}_1^z \rangle_{RRR}$	$\langle \mathcal{O}_1^z \rangle_{LLR}$	$\langle \mathcal{O}_1^z \rangle_{RLL}$	$\langle \mathcal{O}_2^z \rangle_{RRR}$	$\langle \mathcal{O}_2^z \rangle_{LLR}$	$\langle \mathcal{O}_2^z \rangle_{RLL}$	$\langle \mathcal{O}_3^z \rangle_{RRR}$	$\langle \mathcal{O}_3^z \rangle_{LRR}$	$\langle \mathcal{O}_3^z \rangle_{LLR}$
37.2	32.27	14.04	-8.27	-11.16	-6.82	-10.04	16.59	-12.11

The $n - \bar{n}$ conversion operator

Recall the relations before:

$$\delta = c_{BSM} c_{QCD} \langle \bar{n} | O | n \rangle, \ O = \sum_{i,\chi} \lambda_{m,\chi} (O_m)_{\chi}$$

[M. Buchoff et al (2012), Rao and Shrock (1982)] .

Assumption: Only keep the one associated with the biggest matrix element, i.e.,

$$c_{BSM}c_{QCD}\lambda_{RRR}^{1}\frac{N^{6}p^{-3}}{(4\pi)^{2}}\langle O_{1}\rangle_{RRR}pprox\delta$$

Similarly for $n - \bar{n}$ conversion:

$$2\alpha j^z = c_{BSM} c_{QCD} \langle \bar{n} | O_{cov} | n \rangle \approx \frac{j^z}{q^2} c_{BSM} c_{QCD} \lambda_{RRR}^1 \frac{N^6 p^{-3}}{(4\pi)^2} \frac{e}{3} \frac{m}{\rho^2 - m^2} \langle \mathcal{O}_1^z \rangle_{RRR}$$

$$\Rightarrow \alpha = \delta \frac{\mathrm{e}}{\mathrm{6q^2}} \frac{\mathrm{m}}{\mathrm{p^2 - m^2}} \frac{\langle \mathcal{O}_1^{\mathrm{z}} \rangle_{\mathrm{RRR}}}{\langle \mathbf{O}_1 \rangle_{\mathrm{RRR}}}.$$

- The mass scale of the suppression needs not come from BSM theory.
- If m=0, $n-\bar{n}$ oscillation can be non-zero, but no $n-\bar{n}$ conversion.

$n - \bar{n}$ conversion and scattering experiments

We can consider process, such as $e+n \to \bar{n}+e$, or more practically

•
$$e + {}^{3}He \rightarrow e + \bar{n} + X(n, p)$$
,

•
$$n + {}^{1}H \rightarrow \bar{n} + p + X(e)$$
,

where X is an unspecified final state.

Summary and Outlook

- We argued that spin effect can be important to $n \bar{n}$ transition process and considered the $n \bar{n}$ conversion operators.
- We find that there exist phase constraints associated with discrete symmetry transformations of fermions with B-L violation.
- Due to the connection between $n-\bar{n}$ oscillation and $n-\bar{n}$ conversion, we can determine the low energy "constant" of this operator through EM interaction and find that the additional mass scale of suppression needs not come from BSM physics.
- This operator offers us an opportunity to realize $n-\bar{n}$ transition through scattering experiments.

Backup slides

Majorana phase constraints

The plane-wave expansion of a general Majorana field ψ_m is

$$\psi_m(x) = \int \frac{d^3\mathbf{p}}{(2\pi)^{3/2}\sqrt{2E}} \sum_s \left\{ f(\mathbf{p}, s) u(\mathbf{p}, s) e^{-i\mathbf{p}\cdot x} + \lambda f^{\dagger}(\mathbf{p}, s) v(\mathbf{p}, s) e^{i\mathbf{p}\cdot x} \right\} .$$

where λ is the creation phase factor and can be chosen arbitrarily. Now applying C transformation and Majorana condition,

$$i\gamma^2\psi_m^*(x)=\lambda^*\psi_m(x),$$

yields

$$\mathbf{C}\psi_{m}(x)\mathbf{C}^{-1} = \eta_{c}\lambda^{*}\psi_{m}(x),$$

i.e. $\mathbf{C}f(\mathbf{p},s)\mathbf{C}^{-1}=\eta_c\lambda^*f(\mathbf{p},s)$ and $\mathbf{C}f^\dagger(\mathbf{p},s)\mathbf{C}^{-1}=\eta_c\lambda^*f^\dagger(\mathbf{p},s)$. Since C is a unitary operator, Hermitian conjugate shows $\eta_c^*\lambda$ is real.

Majorana phase constraints

Under **CP**, we find $\eta_p^* \eta_c^* \lambda$ must be imaginary, or η_p^* must be imaginary. Under **T**, we have $\eta_t \lambda$ must be real. Under **CPT**, we have

$$\mathbf{CPT}\psi_{m}(x)(\mathbf{CPT})^{-1} = -\eta_{c}\eta_{p}\eta_{t}\gamma^{5}\psi_{m}^{*}(-x),$$

or

$$\mathbf{CPT} f(\mathbf{p}, s) (\mathbf{CPT})^{-1} = s\lambda^* \eta_c \eta_p \eta_t f(\mathbf{p}, -s),
\mathbf{CPT} f^{\dagger}(\mathbf{p}, s) (\mathbf{CPT})^{-1} = -s\lambda \eta_c \eta_p \eta_t f^{\dagger}(\mathbf{p}, -s).$$

Notice **CPT** is **antiunitary** and define **CPT** = KU_{cpt} , where U_{cpt} denotes a unitarity operator. We find $\eta_c \eta_p \eta_t$ is pure imaginary!.

- **C**: $\eta_c^* \lambda$ is real;
- **CP**: $\eta_p^* \eta_c^* \lambda$ is imaginary or η_p^* is imaginary;
- **T**: $\eta_t \lambda$ is real;
- **CPT**: $\eta_c \eta_p \eta_t$ is imaginary. $\Rightarrow \eta_c \eta_t$ is real.

Notice order does not matter and no constraint for $\eta_c \eta_{p,\dots}$

Phase constraints for Dirac field in B-L violation theories

The plane-wave expansion of a Dirac field $\psi(x)$ is given by

$$\psi(x) = \int \frac{d^3\mathbf{p}}{(2\pi)^{3/2}\sqrt{2E}} \sum_{s=\pm} \left\{ b(\mathbf{p}, s) u(\mathbf{p}, s) e^{-i\mathbf{p} \cdot x} + d^{\dagger}(\mathbf{p}, s) v(\mathbf{p}, s) e^{i\mathbf{p} \cdot x} \right\}$$

Construct a Majorana field from Dirac fields:

$$\psi_{m\pm}(x) = \frac{1}{\sqrt{2}}(\psi(x) \pm \mathbf{C}\psi(x)\mathbf{C}^{\dagger})$$

then plane-wave expansion is

$$\psi_{m\pm}(x) = \int \frac{d^3\mathbf{p}}{(2\pi)^{3/2}\sqrt{2E}} \sum_{s} \left\{ w_{\pm}(\mathbf{p},s)u(\mathbf{p},s)e^{-i\mathbf{p}\cdot x} \pm \eta_c w_{\pm}^{\dagger}(\mathbf{p},s)v(\mathbf{p},s)e^{i\mathbf{p}\cdot x} \right\}.$$

where $w_{m\pm}(\mathbf{p},s) \equiv \frac{1}{\sqrt{2}}[b(\mathbf{p},s) \pm \eta_c d(\mathbf{p},s)]$ and $\lambda = \pm \eta_c$. We find the same phase constraints for Dirac fields as Majorana fields.

Implications of the CPT phases

4×4 effective Hamiltonian framework

Work in the basis $|n(\mathbf{p},+)\rangle, |\bar{n}(\mathbf{p},+)\rangle, n(\mathbf{p},-)\rangle, |\bar{n}(\mathbf{p},-)\rangle$. [SG and Jafari (2015)]

Spin-dependent SM effects involving transverse magnetic fields could realize $n-\bar{n}$ transitions in which the particle spin flips without magnetic quenching.

However, it is sensitive to the CPT phase constraint.

Consider $n-\bar{n}$ oscillate in a static \mathbf{B}_0 with $\omega_0 \equiv -\mu_n B_0$. Apply a static \mathbf{B}_1 suddenly at t=0 and define $\omega_1 \equiv -\mu_n B_1$. The Hamiltonian matrix at t>0 is

$$\mathcal{H} = \left(egin{array}{cccc} M + \omega_0 & \delta & \omega_1 & 0 \ \delta & M - \omega_0 & 0 & -\omega_1 \ \omega_1 & 0 & M - \omega_0 & -\delta \eta_{cpt}^2 \ 0 & -\omega_1 & -\delta \eta_{cpt}^2 & M + \omega_0 \end{array}
ight) \,,$$

where δ denotes a $n(+) \rightarrow \bar{n}(+)$ transition matrix element.

B-L violation and theories of self-conjugate fermions

In 1967, in attempting to rationalize the spectral pattern of the low-lying, light hadrons, Carruthers discovered a class of theories for which the CPT theorem does not hold. [Carruthers, 1967]

The pions form a self-conjugate isospin multiplet (π^+, π^0, π^-) , but the kaons form pair-conjugate multiplets (K^+, K^0) and (\bar{K}^0, K^-) .

Carruthers discovered that free theories of self-conjugate bosons with half-integer isospin are nonlocal, that the commutator of two self-conjugate fields with opposite isospin components do not vanish at space-like separations. [Carruthers, 1967]

Same conclusion for theories of arbitrary spin. [Lee, 1967; Fleming and Kazes, 1967; Jin, 1967]

B-L violation and theories of self-conjugate fermions

Failure of weak local communitivity \Rightarrow CPT symmetry is not expected to hold, nor should the CPT theorem of Greenberg apply.

[Carruthers, 1968; Streater and Wightman, 2000; Greenberg, 2002]

The conclusion here is it is possible to have self-conjugate theories of isospin I=0, but it is not possible to have self-conjugate theories of I=1/2.

Note neutron and antineutron are members of pair-conjugate I = 1/2 multiplets. In addition, the quark-level operators that generate $n-\bar{n}$ oscillations [Rao & Shrock, 1982] would also produce $p-\bar{p}$ oscillations under the isospin transformation $u\leftrightarrow d$.

Therefore, to study $n - \bar{n}$ oscillations in QCD, Isospin symmetry must be broken.

MIT bag model VS Lattice QCD

Table 2: Preliminarly results for matrix elements of 6-quark operators 2.1 and comparison to the MIT Bag Model results [8]. The first line shows matrix elements for $I = 3_{R,L}$ operators vanishing identically.

	$Z(\operatorname{lat} \to \overline{MS})$	$\mathcal{O}^{\overline{MS}(2 \text{ GeV})}[10^{-5}\text{GeV}^6]$	Bag "A"	LQCD Bag "A"	Bag "B"	LQCD Bag "B"
$[(RRR)_3]$	0.62(12)	0	0	_	0	_
$[(RRR)_1]$	0.454(33)	45.4(5.6)	8.190	5.5	6.660	6.8
$[R_1(LL)_0]$	0.435(26)	44.0(4.1)	7.230	6.1	6.090	7.2
$[(RR)_1L_0]$	0.396(31)	-66.6(7.7)	-9.540	7.0	-8.160	8.1
$[(RR)_2L_1]^{(1)}$	0.537(52)	-2.12(26)	1.260	-1.7	-0.666	3.2
$[(RR)_2L_1]^{(2)}$	0.537(52)	0.531(64)	-0.314	-1.7	0.167	3.2
$[(RR)_2L_1]^{(3)}$	0.537(52)	-1.06(13)	0.630	-1.7	-0.330	3.2

[Syritsyn, Buchoff, Schroeder and Wasem, (2015)]

MIT bag model VS Lattice QCD

Table 1: Classification of $N-\bar{N}$ transition operators according to $SU(3)_{L,R}$ flavor symmetry. The other seven operators are obtained by replacing $L \leftrightarrow R$. The operators are built from left/right diquarks denoted as L,R, respectively, in the 1st column. Notation $(\ldots)_I$ denotes projection on representation with total isospin I. The 2nd column shows corresponding operators in terms of Eq.(2.1). The $SU(2)_{L,R}$ representation is shown in the 3rd column. The 1-loop anomalous dimension is given in the 4th column.

	\mathscr{O}^{6q}	$\mathbf{I}_R \otimes \mathbf{I}_L$	γ^{σ}
$[(RRR)_3]$	$\mathcal{O}_{R(RR)}^1 + 4\mathcal{O}_{(RR)R}^2$	$3_R \otimes 0_L$	$(\alpha_S/4\pi)(-12)$
$[(RRR)_1]$	$\mathcal{O}_{(RR)R}^2 - \mathcal{O}_{R(RR)}^1 \equiv 3\mathcal{O}_{(RR)R}^3$	$1_R \otimes 0_L$	$(\alpha_S/4\pi)(-2)$
$[R_1(LL)_0]$	$\mathscr{O}_{(LL)R}^2 - \mathscr{O}_{L(LR)}^1 \equiv 3\mathscr{O}_{(LL)R}^3$	$1_R \otimes 0_L$	0
$[(RR)_1L_0]$	$3\mathscr{O}_{(LR)R}^3$	$1_R \otimes 0_L$	$(\alpha_{S}/4\pi)(+2)$
$[(RR)_2L_1]_{(1)}$	$\mathcal{O}_{L(RR)}^1$	$2_R \otimes 1_L$	$(\alpha_S/4\pi)(-6)$
$\left[(RR)_2L_1\right]_{(2)}$	$\mathscr{O}_{(LR)R}^2$	$2_R \otimes 1_L$	$(\alpha_S/4\pi)(-6)$
$[(RR)_2L_1]_{(3)}$	$\mathcal{O}_{R(LR)}^1 + 2\mathcal{O}_{(RR)L}^2$	$2_R \otimes 1_L$	$(\alpha_S/4\pi)(-6)$

[Syritsyn, Buchoff, Schroeder and Wasem, (2015)]

CP transformation properties

The CP transformations of non-vanishing operators are:

$$\mathcal{O}_{1} = \psi^{\mathsf{T}} C \psi + \text{h.c.} \qquad \stackrel{\mathsf{CP}}{\Longrightarrow} -(\eta_{c} \eta_{p})^{2} ,$$

$$\mathcal{O}_{2} = \psi^{\mathsf{T}} C \gamma_{5} \psi + \text{h.c.} \qquad \stackrel{\mathsf{CP}}{\Longrightarrow} -(\eta_{c} \eta_{p})^{2} ,$$

$$\mathcal{O}_{4} = \psi^{\mathsf{T}} C \gamma^{\mu} \gamma_{5} \psi \, \partial^{\nu} F_{\mu\nu} + \text{h.c.} \qquad \stackrel{\mathsf{CP}}{\Longrightarrow} -(\eta_{c} \eta_{p})^{2} ,$$

Even with earlier determined phase constraint that $\eta_p^2=-1$, CP transformation properties of the operators are not definite and only depend on η_c^2 .

CP violation in $n - \bar{n}$ oscillations

$$H = \begin{pmatrix} m_n - \frac{i}{2}\Gamma_n & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{12}^* - \frac{i}{2}\Gamma_{12}^* & m_n - \frac{i}{2}\Gamma_n \end{pmatrix},$$

$$\frac{P_{|n\rangle\to|\bar{n}\rangle}}{P_{|\bar{n}\rangle\to|n\rangle}}-1\simeq\frac{2|\Gamma_{12}|}{|M_{12}|}\sin\beta,$$

[McKeen and Nelson, 2015]