$n-\bar{n}$ transitions

Xinshuai Yan

Department of Physics and Astronomy
University of Kentucky, Lexington, KY

March 4, 2017
Based on Susan Gardner and X. Yan, Phys. Rev. D93, 096008 (2016) arXiv:1602.00693
and ongoing work

Why $n-\bar{n}$ transitions?

Three ingredients needed for explanation of baryon asymmetry in our universe (BAU):

- Baryon number violation (B);
- C and CP violation;
- departure from thermal equilibrium.
[Sakharov 1967]

Two kinds of B phenomena :

- $|\Delta B|=1: \Lambda_{p \text { decay }} \geq 10^{15} \mathrm{GeV}$;
- $|\Delta B|=2: \Lambda_{n \bar{n}} \geq 10^{5.5} \mathrm{GeV}$.
$n-\bar{n}$ oscillations may be also connected to L [Marshak and Mohapatra (1980), Babu and Mohapatra (2015)]

Challenges of observing $n-\bar{n}$ oscillations

Neutron is spin $\frac{1}{2}$ particle.
CPT and Lorentz symmetry is assumed,

$$
\begin{aligned}
& H=\left(\begin{array}{cc}
M-\mu \cdot \mathbf{B} & \delta \\
\delta & M+\mu \cdot \mathbf{B}
\end{array}\right) \\
\Rightarrow \quad & P_{n \rightarrow \bar{n}}(t) \simeq \frac{\delta^{2}}{2(\mu \cdot \mathbf{B})^{2}}[1-\cos (2 \mu B t)] \exp (-\lambda t)
\end{aligned}
$$

where $\lambda^{-1}=\tau_{n}=0.88 \times 10^{3} \mathrm{~s}$. So external magnetic fields suppress transition, unless $t \ll(2 \mu B)^{-1}$ (quasi-free condition).
[Marshak and Mohapatra (1980); Cowsik and Nussinov (1981); Phillips II et al (2014)] Same conclusion for matter effect. \Rightarrow explore alternative methods.

Using $n-\bar{n}$ oscillation to set limits on the strength of Lorentz invariance violation has also been considered. [Babu and Mohapatra (2015)]

Spin offers a new path?

CPT symmetry guarantees that $n(\uparrow)$ and $\bar{n}(\downarrow)$ have the same energy. \Rightarrow A hint: spin might be important.

Once the fermion anticommutation relation is taken into account, there are $\mathbf{3}$ non-trivial lowest mass dimension operators:

- $n^{\top} C n+$ h.c., $n-\bar{n}$ oscillation operator, always "quenched";
- $n^{\top} C \gamma^{5} n+$ h.c., does not contribute to $n \bar{n}$ oscillation; [Berezhiani and Vainshtein, (2015), Fujikawa and Tureanu, (2015)]
- $n^{\top} C \gamma^{\mu} \gamma^{5} n \partial^{\nu} F_{\nu \mu}+$ h.c.,
[Berezhiani and Vainshtein (2015)]

The external source, $j_{\mu}=\partial^{\nu} F_{\nu \mu}$, requires the consideration of spin degrees of freedom of n and \bar{n}.
Consider the process $n\left(p_{1}\right)+n\left(p_{2}\right) \rightarrow \gamma^{*}(k)$. Crossing yields $n-\bar{n} \gamma^{*}$ transition.

Phases are restricted!

When we checked the CPT transformation properties of these operators, we found that phases of discrete symmetry transformations, such as \mathbf{P} and CPT are not arbitrary! In fact, $\eta_{c} \eta_{p} \eta_{t}$ is imaginary and η_{p} is imaginary.

This was noticed before [Feinberg and Weinberg(1959), P. A. Carruthers(1971), Kayser and Goldhaber(1983), Kayser (1984)], but considered as a property of Majorana fields.

We find it is also true for Dirac fields with $B-L$ violation, and hence believe it is associated with discrete symmetries themselves.
[SG and Yan (2016)]
Now we focus on the " j_{μ} " operator.

Connect $n-\bar{n}$ conversion with oscillation

Dimension analysis of the j_{μ} operator shows that

$$
\alpha\left(n^{T} C \gamma^{\mu} \gamma_{5} n j_{\mu}+\text { h.c. }\right)
$$

with $[\alpha]=-2$.
We want to evaluate the mass scale of this suppression.

Note that quarks are charged under QED and QCD. So the simplest way to explore the connection is through QED.
Also a difference between u and d is necessary to make $B-L$ violation appear in a physically consistent way. [S.G and Yan (2016)]

Quark-level $n-\bar{n}$ oscillation:

$$
\Lambda_{Q C D} \ll \Lambda \ll \Lambda_{B S M}
$$

6-fermion $n-\bar{n}$ oscillation operators

The observable comes from three inputs:

$$
\frac{1}{\tau_{n \bar{n}}}=\delta=c_{B S M} c_{Q C D}\langle\bar{n}| O|n\rangle, \quad[\mathrm{M} . \text { Buchoff et al (2012) }]
$$

where $c_{B S M}$ is the running of the $B S M$ theory to the weak interaction scale, $c_{Q C D}$ is the QCD running from weak to the nuclear scale, and $\langle\bar{n}| O|n\rangle$ is the matrix element of the 6 -fermion $n-\bar{n}$ oscillation operators. Both $c_{B S M}$ and $c_{Q C D}$ have been analyzed in, e.g., [Winslow and Ng (2010), Buchoff and Wagman (2016)].

The operator $O=\sum_{i, \chi} \lambda_{m, \chi}\left(O_{m}\right)_{\chi}$ and there are 18 independent operators if $U(1)_{\text {em }}$ and $S U(3)_{\text {color }}$ symmetries are considered.

$$
\begin{aligned}
& \left(O_{1}\right)_{\chi_{1} \chi_{2} \chi_{3}}=\left[u_{\chi_{1}}^{\top \alpha} C u_{\chi_{1}}^{\beta}\right]\left[d_{\chi_{2}}^{\top \gamma} C d_{\chi_{2}}^{\delta}\right]\left[d_{\chi_{3}}^{\top \rho} C d_{\chi_{3}}^{\sigma}\right]\left(T_{s}\right)_{\alpha \beta \gamma \delta \rho \sigma}, \\
& \left(O_{2}\right)_{\chi_{1} \chi_{2} \chi_{3}}=\left[u_{\chi_{1}}^{\top \alpha} C d_{\chi_{1}}^{\beta}\right]\left[u_{\chi_{2}}^{\top \gamma} C d_{\chi_{2}}^{\delta}\right]\left[d_{\chi_{3}}^{\top \rho} C d_{\chi_{3}}^{\sigma}\right]\left(T_{s}\right)_{\alpha \beta \gamma \delta \rho \sigma}, \\
& \left(O_{3}\right)_{\chi_{1} \chi_{2} \chi_{3}}=\left[u_{\chi_{1}}^{\top \alpha} C d_{\chi_{1}}^{\beta}\right]\left[u_{\chi_{2}}^{\top \gamma} C d_{\chi_{2}}^{\delta}\right]\left[d_{\chi_{3}}^{\top \rho} C d_{\chi_{3}}^{\sigma}\right]\left(T_{a}\right)_{\alpha \beta \gamma \delta \rho \sigma},
\end{aligned}
$$

with $\left(T_{s}\right)_{\alpha \beta \gamma \delta \rho \sigma}=\epsilon_{\rho \alpha \gamma} \epsilon_{\sigma \beta \delta}+\epsilon_{\sigma \alpha \gamma} \epsilon_{\rho \beta \delta}+\epsilon_{\rho \beta \gamma} \epsilon_{\sigma \alpha \delta}+\epsilon_{\sigma \beta \gamma} \epsilon_{\rho \alpha \delta}$
and $\left(T_{a}\right)_{\alpha \beta \gamma \delta \rho \sigma}=\epsilon_{\rho \alpha \beta} \epsilon_{\sigma \gamma \delta}+\epsilon_{\sigma \alpha \beta} \epsilon_{\rho \gamma \delta}$. [Rao and Shrock (1982)]

6-fermion $n-\bar{n}$ oscillation operators

The number of independent operators can be reduced to 6 , since they are expected to be invariant under $S U(2)_{L} \times U(1)_{Y}$.

These are

$$
\begin{array}{lll}
\left(O_{1}\right)_{R R R}, & \left(O_{2}\right)_{R R R}, & \left(O_{3}\right)_{R R R} \\
2\left(O_{3}\right)_{L R R}, & 4\left(O_{3}\right)_{L L R}, & 4\left(\left(O_{1}\right)_{L L R}-\left(O_{2}\right)_{L L R}\right) .
\end{array}
$$

The matrix element $\langle\bar{n}| O|n\rangle$ can be calculated in MIT bag model [Rao and Shrock (1982)] or through lattice QCD [M. Buchoff et al (2012)].

EM dressing

Consider the EM interaction with these quark-level operators:

e.g. consider $\left(O_{1}\right)_{\chi_{1} \chi_{2} \chi_{3}}$: Calculate the amplitude of this process and write down the associated effective operator.

$$
\begin{aligned}
\left(O_{c o v}^{1}\right)_{\chi_{1} \chi_{2} \chi_{3}}= & j_{\mu} \frac{\lambda_{\chi_{1} \chi_{2} \chi_{3}}^{1}}{q^{2}}\left[\frac{-4 e}{3} \frac{m_{u}}{p^{2}-m_{u}^{2}}\left[u_{-\chi_{1}}^{\top \alpha} C \gamma^{\mu} u_{\chi_{1}}^{\beta}\right]\left[d_{\chi_{2}}^{\top \gamma} C d_{\chi_{2}}^{\delta}\right]\left[d_{\chi_{3}}^{\top \rho} C d_{\chi_{3}}^{\sigma}\right]\right. \\
& +\frac{2 e}{3} \frac{m_{d}}{p^{2}-m_{d}^{2}}\left[u_{\chi_{1}}^{\top \alpha} C u_{\chi_{1}}^{\beta}\right]\left[d_{-\chi_{2}}^{\top \gamma} C \gamma^{\mu} d_{\chi_{2}}^{\delta}\right]\left[d_{\chi_{3}}^{\top \rho} C d_{\chi_{3}}^{\sigma}\right] \\
& \left.+\frac{2 e}{3} \frac{m_{d}}{p^{2}-m_{d}^{2}}\left[u_{\chi_{1}}^{\top \alpha} C u_{\chi_{1}}^{\beta}\right]\left[d_{\chi_{2}}^{\top \gamma} C d_{\chi_{2}}^{\delta}\right]\left[d_{-\chi_{3}}^{\top \rho} C \gamma^{\mu} d_{\chi_{3}}^{\sigma}\right]\right]\left(T_{s}\right)_{\alpha \beta \gamma \delta \rho \sigma}
\end{aligned}
$$

Matrix elements in MIT bag model

Calculate the matrix elements in the MIT bag model ($m_{u}=m_{d}=0.108 \mathrm{GeV}$):
Factor out the common factor $N^{6} p^{-3} /(4 \pi)^{2}$ and list the matrix elements of $n-\bar{n}$ oscillation and conversion operators below:

Table 1: Matrix element of $n-\bar{n}$ oscillation operators

$\left\langle O_{1}\right\rangle_{R R R}$	$\left\langle O_{1}\right\rangle_{\text {LLR }}$	$\left\langle O_{1}\right\rangle_{R L L}$	$\left\langle O_{2}\right\rangle_{R R R}$	$\left\langle O_{2}\right\rangle_{\text {LLR }}$	$\left\langle O_{2}\right\rangle_{R L L}$	$\left\langle O_{3}\right\rangle_{R R R}$	$\left\langle O_{3}\right\rangle_{L R R}$	$\left\langle O_{3}\right\rangle_{\text {LLR }}$
-5.33	-4.17	-0.666	1.33	1.92	0.167	2.22	-2.72	2.03

The pattern of these matrix elements is consistent with Lattice QCD calculation.

Table 2: Matrix element of $n-\bar{n}$ conversion operators

$\left\langle\mathcal{O}_{1}^{2}\right\rangle_{R R R}$	$\left\langle\mathcal{O}_{1}^{2}\right\rangle_{\text {LLR }}$	$\left\langle\mathcal{O}_{1}^{2}\right\rangle_{\text {RLL }}$	$\left\langle\mathcal{O}_{2}^{2}\right\rangle_{\text {RRR }}$	$\left\langle\mathcal{O}_{2}^{2}\right\rangle_{\text {LLR }}$	$\left\langle\mathcal{O}_{2}^{2}\right\rangle_{R L L}$	$\left\langle\mathcal{O}_{3}^{2}\right\rangle_{R R R}$	$\left\langle\mathcal{O}_{3}^{2}\right\rangle_{\text {LRR }}$	$\left\langle\mathcal{O}_{3}^{2}\right\rangle_{\text {LLR }}$
37.2	32.27	14.04	-8.27	-11.16	-6.82	-10.04	16.59	-12.11

The $n-\bar{n}$ conversion operator

Recall the relations before:

$$
\delta=c_{B S M} C_{Q C D}\langle\bar{n}| O|n\rangle, O=\sum_{i, \chi} \lambda_{m, \chi}\left(O_{m}\right)_{\chi}
$$

[M. Buchoff et al (2012), Rao and Shrock (1982)] .
Assumption: Only keep the one associated with the biggest matrix element, i.e.,

$$
C_{B S M} C_{Q C D} \lambda_{R R R}^{1} \frac{N^{6} p^{-3}}{(4 \pi)^{2}}\left\langle O_{1}\right\rangle_{R R R} \approx \delta
$$

Similarly for $n-\bar{n}$ conversion:

$$
2 \alpha j^{z}=c_{B S M} C_{Q C D}\langle\bar{n}| O_{C O V}|n\rangle \approx \frac{j^{z}}{q^{2}} C_{B S M} C_{Q C D} \lambda_{R R R}^{1} \frac{N^{6} p^{-3}}{(4 \pi)^{2}} \frac{e}{3} \frac{m}{p^{2}-m^{2}}\left\langle\mathcal{O}_{1}^{z}\right\rangle_{R R R}
$$

$\Rightarrow \alpha=\delta \frac{\mathbf{e}}{6 \mathbf{q}^{2}} \frac{\mathbf{m}}{\mathbf{p}^{2}-\mathbf{m}^{2}} \frac{\left\langle\mathcal{O}_{1}^{2}\right\rangle_{\mathrm{RRR}}}{\left\langle\mathbf{O}_{1}\right\rangle_{\mathrm{RRR}}}$.

- The mass scale of the suppression needs not come from BSM theory.
- If $m=0, n-\bar{n}$ oscillation can be non-zero, but no $n-\bar{n}$ conversion.

$n-\bar{n}$ conversion and scattering experiments

We can consider process, such as $e+n \rightarrow \bar{n}+e$, or more practically

- $e+{ }^{3} \mathrm{He} \rightarrow e+\bar{n}+X(n, p)$,
- $n+{ }^{1} H \rightarrow \bar{n}+p+X(e)$,
where X is an unspecified final state.

Summary and Outlook

- We argued that spin effect can be important to $n-\bar{n}$ transition process and considered the $n-\bar{n}$ conversion operators.
- We find that there exist phase constraints associated with discrete symmetry transformations of fermions with $B-L$ violation.
- Due to the connection between $n-\bar{n}$ oscillation and $n-\bar{n}$ conversion, we can determine the low energy "constant" of this operator through EM interaction and find that the additional mass scale of suppression needs not come from BSM physics.
- This operator offers us an opportunity to realize $n-\bar{n}$ transition through scattering experiments.

Backup slides

Majorana phase constraints

The plane-wave expansion of a general Majorana field ψ_{m} is
$\psi_{m}(x)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3 / 2} \sqrt{2 E}} \sum_{s}\left\{f(\mathbf{p}, s) u(\mathbf{p}, s) e^{-i p \cdot x}+\lambda f^{\dagger}(\mathbf{p}, s) v(\mathbf{p}, s) e^{i p \cdot x}\right\}$.
where λ is the creation phase factor and can be chosen arbitrarily. Now applying C transformation and Majorana condition,

$$
i \gamma^{2} \psi_{m}^{*}(x)=\lambda^{*} \psi_{m}(x)
$$

yields

$$
\mathbf{C} \psi_{m}(x) \mathbf{C}^{-1}=\eta_{c} \lambda^{*} \psi_{m}(x)
$$

i.e. $\mathbf{C} f(\mathbf{p}, s) \mathbf{C}^{-1}=\eta_{c} \lambda^{*} f(\mathbf{p}, s)$ and $\mathbf{C} f^{\dagger}(\mathbf{p}, s) \mathbf{C}^{-1}=\eta_{c} \lambda^{*} f^{\dagger}(\mathbf{p}, s)$.

Since \mathbf{C} is a unitary operator, Hermitian conjugate shows $\eta_{c}^{*} \lambda$ is real.

Majorana phase constraints

Under CP, we find $\eta_{p}^{*} \eta_{c}^{*} \lambda$ must be imaginary, or η_{p}^{*} must be imaginary. Under T, we have $\eta_{t} \lambda$ must be real.
Under CPT, we have

$$
\mathbf{C P T} \psi_{m}(x)(\mathbf{C P T})^{-1}=-\eta_{c} \eta_{p} \eta_{t} \gamma^{5} \psi_{m}^{*}(-x)
$$

or

$$
\begin{aligned}
\mathbf{C P T} f(\mathbf{p}, s)(\mathbf{C P T})^{-1} & =s \lambda^{*} \eta_{c} \eta_{p} \eta_{t} f(\mathbf{p},-s) \\
\mathbf{C P T} f^{\dagger}(\mathbf{p}, s)(\mathbf{C P T})^{-1} & =-s \lambda \eta_{c} \eta_{p} \eta_{t} f^{\dagger}(\mathbf{p},-s)
\end{aligned}
$$

Notice CPT is antiunitary and define CPT $=K U_{c p t}$, where $U_{c p t}$ denotes a unitarity operator. We find $\eta_{c} \eta_{p} \eta_{t}$ is pure imaginary!.

- $\mathbf{C}: \eta_{c}^{*} \lambda$ is real;
- CP: $\eta_{p}^{*} \eta_{c}^{*} \lambda$ is imaginary or η_{p}^{*} is imaginary;
- $\mathbf{T}: \eta_{t} \lambda$ is real;
- CPT: $\eta_{c} \eta_{p} \eta_{t}$ is imaginary. $\Rightarrow \eta_{c} \eta_{t}$ is real.

Notice order does not matter and no constraint for $\eta_{c} \eta_{p}$.

Phase constraints for Dirac field in B-L violation theories

The plane-wave expansion of a Dirac field $\psi(x)$ is given by

$$
\psi(x)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3 / 2} \sqrt{2 E}} \sum_{s= \pm}\left\{b(\mathbf{p}, s) u(\mathbf{p}, s) e^{-i p \cdot x}+d^{\dagger}(\mathbf{p}, s) v(\mathbf{p}, s) e^{i p \cdot x}\right\}
$$

Construct a Majorana field from Dirac fields:

$$
\psi_{m \pm}(x)=\frac{1}{\sqrt{2}}\left(\psi(x) \pm \mathbf{C} \psi(x) \mathbf{C}^{\dagger}\right)
$$

then plane-wave expansion is
$\psi_{m \pm}(x)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3 / 2} \sqrt{2 E}} \sum_{s}\left\{w_{ \pm}(\mathbf{p}, s) u(\mathbf{p}, s) e^{-i p \cdot x} \pm \eta_{c} w_{ \pm}^{\dagger}(\mathbf{p}, s) v(\mathbf{p}, s) e^{i p \cdot x}\right\}$.
where $w_{m \pm}(\mathbf{p}, s) \equiv \frac{1}{\sqrt{2}}\left[b(\mathbf{p}, s) \pm \eta_{c} d(\mathbf{p}, s)\right]$ and $\lambda= \pm \eta_{c}$. We find the same phase constraints for Dirac fields as Majorana fields.

Implications of the CPT phases

4×4 effective Hamiltonian framework

Work in the basis $|n(\mathbf{p},+)\rangle,|\bar{n}(\mathbf{p},+)\rangle, n(\mathbf{p},-)\rangle,|\bar{n}(\mathbf{p},-)\rangle$.
[SG and Jafari (2015)]
Spin-dependent SM effects involving transverse magnetic fields could realize $n-\bar{n}$ transitions in which the particle spin flips without magnetic quenching.
However, it is sensitive to the CPT phase constraint.
Consider $n-\bar{n}$ oscillate in a static \mathbf{B}_{0} with $\omega_{0} \equiv-\mu_{n} B_{0}$. Apply a static \mathbf{B}_{1} suddenly at $t=0$ and define $\omega_{1} \equiv-\mu_{n} B_{1}$. The Hamiltonian matrix at $t>0$ is

$$
\mathcal{H}=\left(\begin{array}{cccc}
M+\omega_{0} & \delta & \omega_{1} & 0 \\
\delta & M-\omega_{0} & 0 & -\omega_{1} \\
\omega_{1} & 0 & M-\omega_{0} & -\delta \eta_{c p t}^{2} \\
0 & -\omega_{1} & -\delta \eta_{c p t}^{2} & M+\omega_{0}
\end{array}\right)
$$

where δ denotes a $n(+) \rightarrow \bar{n}(+)$ transition matrix element.

B-L violation and theories of self-conjugate fermions

In 1967, in attempting to rationalize the spectral pattern of the low-lying, light hadrons, Carruthers discovered a class of theories for which the CPT theorem does not hold. [Carruthers, 1967]

The pions form a self-conjugate isospin multiplet $\left(\pi^{+}, \pi^{0}, \pi^{-}\right)$, but the kaons form pair-conjugate multiplets $\left(K^{+}, K^{0}\right)$ and (\bar{K}^{0}, K^{-}).

Carruthers discovered that free theories of self-conjugate bosons with half-integer isospin are nonlocal, that the commutator of two self-conjugate fields with opposite isospin components do not vanish at space-like separations. [Carruthers, 1967]

Same conclusion for theories of arbitrary spin. [Lee, 1967; Fleming and Kazes, 1967; Jin, 1967]

B-L violation and theories of self-conjugate fermions

Failure of weak local communitivity \Rightarrow CPT symmetry is not expected to hold, nor should the CPT theorem of Greenberg apply.
[Carruthers, 1968; Streater and Wightman, 2000; Greenberg, 2002]
The conclusion here is it is possible to have self-conjugate theories of isospin $\mathrm{I}=0$, but it is not possible to have self-conjugate theories of $\mathrm{I}=$ 1/2.
Note neutron and antineutron are members of pair-conjugate $\mathbf{I}=1 / 2$ multiplets. In addition, the quark-level operators that generate $n-\bar{n}$ oscillations [Rao \& Shrock, 1982] would also produce $p-\bar{p}$ oscillations under the isospin transformation $u \leftrightarrow d$.

Therefore, to study $n-\bar{n}$ oscillations in QCD, Isospin symmetry must be broken.

MIT bag model VS Lattice QCD

Table 2: Preliminarly results for matrix elements of 6-quark operators 2.1 and comparison to the MIT Bag Model results [8]. The first line shows matrix elements for $I=3_{R, L}$ operators vanishing identically.

	$Z($ lat $\rightarrow \overline{M S})$	$\sigma^{\overline{M S}(2 \mathrm{GeV})}\left[10^{-5} \mathrm{GeV}^{6}\right]$	Bag "A"	$\frac{\mathrm{LQCD}}{\mathrm{Bag} \mathrm{A}^{\prime}}$	Bag "B"	$\frac{\mathrm{LQCD}}{\mathrm{Bag} " \mathrm{~B} "}$
$\left[(R R R)_{3}\right]$	$0.62(12)$	0	0	-	0	-
$\left[(R R R)_{1}\right]$	$0.454(33)$	$45.4(5.6)$	8.190	5.5	6.660	6.8
$\left[R 1(L L)_{0}\right]$	$0.435(26)$	$44.0(4.1)$	7.230	6.1	6.090	7.2
$\left[(R R)_{1} L_{0}\right]$	$0.396(31)$	$-66.6(7.7)$	-9.540	7.0	-8.160	8.1
$\left[(R R)_{2} L_{1}\right]^{(1)}$	$0.537(52)$	$-2.12(26)$	1.260	-1.7	-0.666	3.2
$\left[(R R)_{2} L_{1}\right]^{(2)}$	$0.537(52)$	$0.531(64)$	-0.314	-1.7	0.167	3.2
$\left[(R R)_{2} L_{1}\right]^{(3)}$	$0.537(52)$	$-1.06(13)$	0.630	-1.7	-0.330	3.2

[Syritsyn, Buchoff, Schroeder and Wasem, (2015)]

MIT bag model VS Lattice QCD

Table 1: Classification of $N-N$ transition operators according to $S U(3)_{L, R}$ flavor symmetry. The other seven operators are obtained by replacing $L \leftrightarrow R$. The operators are built from left/right diquarks denoted as L, R, respectively, in the 1 st column. Notation (...) I denotes projection on representation with total isospin I. The 2 nd column shows corresponding operators in terms of Eq.(2.1). The $S U(2)_{L, R}$ representation is shown in the 3rd column. The 1-loop anomalous dimension is given in the 4th column.

	$\mathscr{O}^{6 q}$	$\mathbf{I}_{R} \otimes \mathbf{I}_{L}$	$\gamma^{\mathscr{\theta}}$
$\left[(R R R)_{\mathbf{3}}\right]$	$\mathscr{O}_{R(R R)}^{1}+4 \mathscr{O}_{(R R) R}^{2}$	$\mathbf{3}_{R} \otimes \mathbf{0}_{L}$	$\left(\alpha_{S} / 4 \pi\right)(-12)$
$\left[(R R R)_{\mathbf{1}}\right]$	$\mathscr{O}_{(R R) R}^{2}-\mathscr{O}_{R(R R)}^{1} \equiv 3 \mathscr{O}_{(R R) R}^{3}$	$\mathbf{1}_{R} \otimes \mathbf{0}_{L}$	$\left(\alpha_{S} / 4 \pi\right)(-2)$
$\left[R_{\mathbf{1}}(L L)_{0}\right]$	$\mathscr{O}_{(L L) R}^{2}-\mathscr{O}_{L(L R)}^{1} \equiv 3 \mathscr{O}_{(L L) R}^{3}$	$\mathbf{1}_{R} \otimes \mathbf{0}_{L}$	0
$\left[(R R)_{1} L_{0}\right]$	$3 \mathscr{O}_{(L R) R}^{3}$	$\mathbf{1}_{R} \otimes \mathbf{0}_{L}$	$\left(\alpha_{S} / 4 \pi\right)(+2)$
$\left[(R R)_{2} L_{\mathbf{1}}\right]_{(1)}$	$\mathscr{O}_{L(R R)}^{1}$	$\mathbf{2}_{R} \otimes \mathbf{1}_{L}$	$\left(\alpha_{S} / 4 \pi\right)(-6)$
$\left[(R R)_{2} L_{1}\right]_{(2)}$	$\mathscr{O}_{(L R) R}^{2}$	$\mathbf{2}_{R} \otimes \mathbf{1}_{L}$	$\left(\alpha_{S} / 4 \pi\right)(-6)$
$\left[(R R)_{2} L_{\mathbf{1}}\right]_{(3)}$	$\mathscr{O}_{R(L R)}^{1}+2 \mathscr{\sigma}_{(R R) L}^{2}$	$\mathbf{2}_{R} \otimes \mathbf{1}_{L}$	$\left(\alpha_{S} / 4 \pi\right)(-6)$

[Syritsyn, Buchoff, Schroeder and Wasem, (2015)]

CP transformation properties

The CP transformations of non-vanishing operators are:

$$
\begin{array}{cl}
\mathcal{O}_{1}=\psi^{T} C \psi+\text { h.c. } & \stackrel{\mathrm{CP}}{\Longrightarrow}-\left(\eta_{c} \eta_{p}\right)^{2}, \\
\mathcal{O}_{2}=\psi^{T} C \gamma_{5} \psi+\text { h.c. } & \stackrel{\mathrm{CP}}{\Longrightarrow}-\left(\eta_{c} \eta_{p}\right)^{2}, \\
\mathcal{O}_{4}=\psi^{T} C \gamma^{\mu} \gamma_{5} \psi \partial^{\nu} F_{\mu \nu}+\text { h.c. } & \xlongequal{\mathrm{CP}}-\left(\eta_{c} \eta_{p}\right)^{2}
\end{array}
$$

Even with earlier determined phase constraint that $\eta_{p}^{2}=-1, \mathrm{CP}$ transformation properties of the operators are not definite and only depend on η_{c}^{2}.

CP violation in $n-\bar{n}$ oscillations

$$
\begin{aligned}
& H=\left(\begin{array}{cc}
m_{n}-\frac{i}{2} \Gamma_{n} & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*} & m_{n}-\frac{i}{2} \Gamma_{n}
\end{array}\right) \\
& \frac{P_{|n\rangle \rightarrow|\bar{n}\rangle}}{P_{|\bar{n}\rangle \rightarrow|n\rangle}}-1 \simeq \frac{2\left|\Gamma_{12}\right|}{\left|M_{12}\right|} \sin \beta
\end{aligned}
$$

[McKeen and Nelson, 2015]

