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Why n − n̄ transitions?

Three ingredients needed for explanation of baryon asymmetry in our
universe (BAU):

Baryon number violation (/B);

C and CP violation;

departure from thermal equilibrium.

[Sakharov 1967]

Two kinds of /B phenomena :

|∆B| = 1: Λp decay ≥ 1015 GeV;

|∆B| = 2: Λnn̄ ≥ 105.5 GeV.

n− n̄ oscillations may be also con-
nected to /L [Marshak and Mohapatra

(1980), Babu and Mohapatra (2015) ]
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Challenges of observing n − n̄ oscillations

Neutron is spin 1
2 particle.

CPT and Lorentz symmetry is assumed,

H =

(
M−µ · B δ

δ M+µ · B

)
⇒ Pn→n̄(t) ' δ2

2(µ · B)2
[1− cos(2µBt)]exp(−λt)

where λ−1 = τn = 0.88× 103s. So external magnetic fields suppress transition,
unless t � (2µB)−1 (quasi-free condition).
[Marshak and Mohapatra (1980); Cowsik and Nussinov (1981); Phillips II et al (2014)]

Same conclusion for matter effect. ⇒ explore alternative methods.

Using n− n̄ oscillation to set limits on the strength of Lorentz invariance violation
has also been considered. [Babu and Mohapatra (2015)]
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Spin offers a new path?

CPT symmetry guarantees that n(↑) and n̄(↓) have the same energy.
⇒ A hint: spin might be important.

Once the fermion anticommutation relation is taken into account,
there are 3 non-trivial lowest mass dimension operators:

n>Cn+ h.c., n − n̄ oscillation operator, always “quenched”;

n>Cγ5n+ h.c., does not contribute to nn̄ oscillation;
[Berezhiani and Vainshtein, (2015), Fujikawa and Tureanu, (2015)]

n>Cγµγ5n∂νFνµ+ h.c., [Berezhiani and Vainshtein (2015)]

The external source, jµ = ∂νFνµ, requires the consideration of spin degrees
of freedom of n and n̄.
Consider the process n(p1) + n(p2)→ γ∗(k). Crossing yields n − n̄γ∗

transition.
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Phases are restricted!

When we checked the CPT transformation properties of these operators,
we found that phases of discrete symmetry transformations, such as P and
CPT are not arbitrary! In fact, ηcηpηt is imaginary and ηp is imaginary.

This was noticed before [ Feinberg and Weinberg(1959), P. A. Carruthers(1971),

Kayser and Goldhaber(1983), Kayser (1984)] , but considered as a property of
Majorana fields.

We find it is also true for Dirac fields with B-L violation, and hence believe
it is associated with discrete symmetries themselves.
[SG and Yan (2016)]

Now we focus on the “jµ” operator.
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Connect n − n̄ conversion with oscillation

Dimension analysis of the jµ operator shows that

α(nTCγµγ5n jµ + h.c.)

with [α] = −2.
We want to evaluate the mass scale of this suppression.

Note that quarks are charged under QED and QCD. So the simplest way
to explore the connection is through QED.
Also a difference between u and d is necessary to make B − L violation
appear in a physically consistent way. [S.G and Yan (2016)]

Quark-level n − n̄ oscillation:
ΛQCD � Λ� ΛBSM
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6-fermion n − n̄ oscillation operators

The observable comes from three inputs:

1
τnn̄

= δ = cBSMcQCD〈n̄|O|n〉, [M. Buchoff et al (2012)]

where cBSM is the running of the BSM theory to the weak interaction scale, cQCD

is the QCD running from weak to the nuclear scale, and 〈n̄|O|n〉 is the matrix
element of the 6-fermion n − n̄ oscillation operators. Both cBSM and cQCD have
been analyzed in, e.g., [Winslow and Ng (2010), Buchoff and Wagman (2016)].

The operator O =
∑

i,χ λm,χ(Om)χ and there are 18 independent operators if
U(1)em and SU(3)color symmetries are considered.

(O1)χ1χ2χ3 = [u>αχ1
Cuβχ1

][d>γχ2
Cdδχ2

][d>ρχ3
Cdσχ3

](Ts)αβγδρσ,

(O2)χ1χ2χ3 = [u>αχ1
Cdβχ1

][u>γχ2
Cdδχ2

][d>ρχ3
Cdσχ3

](Ts)αβγδρσ,

(O3)χ1χ2χ3 = [u>αχ1
Cdβχ1

][u>γχ2
Cdδχ2

][d>ρχ3
Cdσχ3

](Ta)αβγδρσ,

with (Ts)αβγδρσ = εραγεσβδ + εσαγερβδ + ερβγεσαδ + εσβγεραδ

and (Ta)αβγδρσ = εραβεσγδ + εσαβεργδ. [Rao and Shrock (1982)]
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6-fermion n − n̄ oscillation operators

The number of independent operators can be reduced to 6, since they are
expected to be invariant under SU(2)L × U(1)Y .

These are

(O1)RRR , (O2)RRR , (O3)RRR

2(O3)LRR , 4(O3)LLR , 4((O1)LLR − (O2)LLR).

The matrix element 〈n̄|O|n〉 can be calculated in MIT bag model [Rao and

Shrock (1982)] or through lattice QCD [M. Buchoff et al (2012)] .
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EM dressing

Consider the EM interaction with these quark-level operators:

e.g. consider (O1)χ1χ2χ3 : Calculate the amplitude of this process and write down
the associated effective operator.

(O1
cov )χ1χ2χ3 = jµ

λ1
χ1χ2χ3

q2

[−4e

3

mu

p2 −m2
u

[u>α−χ1
Cγµuβχ1

][d>γχ2
Cdδχ2

][d>ρχ3
Cdσχ3

]

+
2e

3

md

p2 −m2
d

[u>αχ1
Cuβχ1

][d>γ−χ2
Cγµdδχ2

][d>ρχ3
Cdσχ3

]

+
2e

3

md

p2 −m2
d

[u>αχ1
Cuβχ1

][d>γχ2
Cdδχ2

][d>ρ−χ3
Cγµdσχ3

]
]
(Ts)αβγδρσ
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Matrix elements in MIT bag model

Calculate the matrix elements in the MIT bag model
(mu = md = 0.108GeV):
Factor out the common factor N6p−3/(4π)2 and list the matrix elements
of n − n̄ oscillation and conversion operators below:

Table 1: Matrix element of n − n̄ oscillation operators

〈O1〉RRR 〈O1〉LLR 〈O1〉RLL 〈O2〉RRR 〈O2〉LLR 〈O2〉RLL 〈O3〉RRR 〈O3〉LRR 〈O3〉LLR
-5.33 -4.17 -0.666 1.33 1.92 0.167 2.22 -2.72 2.03

The pattern of these matrix elements is consistent with Lattice QCD
calculation.

Table 2: Matrix element of n − n̄ conversion operators

〈Oz
1〉RRR 〈Oz

1〉LLR 〈Oz
1〉RLL 〈Oz

2〉RRR 〈Oz
2〉LLR 〈Oz

2〉RLL 〈Oz
3〉RRR 〈Oz

3〉LRR 〈Oz
3〉LLR

37.2 32.27 14.04 -8.27 -11.16 -6.82 -10.04 16.59 -12.11
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The n − n̄ conversion operator

Recall the relations before:

δ = cBSMcQCD〈n̄|O|n〉, O =
∑

i,χ λm,χ(Om)χ

[M. Buchoff et al (2012), Rao and Shrock (1982)] .
Assumption: Only keep the one associated with the biggest matrix element, i.e.,

cBSMcQCDλ
1
RRR

N6p−3

(4π)2 〈O1〉RRR ≈ δ

Similarly for n − n̄ conversion:

2αjz = cBSMcQCD〈n̄|Ocov |n〉 ≈ jz

q2 cBSMcQCDλ
1
RRR

N6p−3

(4π)2
e
3

m
p2−m2 〈Oz

1〉RRR

⇒ α = δ e
6q2

m
p2−m2

〈Oz
1〉RRR

〈O1〉RRR
.

The mass scale of the suppression needs not come from BSM theory.

If m = 0, n − n̄ oscillation can be non-zero, but no n − n̄ conversion.
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n − n̄ conversion and scattering experiments

We can consider process, such as e + n→ n̄ + e,
or more practically

e + 3He → e + n̄ + X (n, p),

n + 1H → n̄ + p + X (e),

where X is an unspecified final state.
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Summary and Outlook

We argued that spin effect can be important to n − n̄ transition
process and considered the n − n̄ conversion operators.

We find that there exist phase constraints associated with discrete
symmetry transformations of fermions with B − L violation.

Due to the connection between n − n̄ oscillation and n − n̄
conversion, we can determine the low energy “constant” of this
operator through EM interaction and find that the additional mass
scale of suppression needs not come from BSM physics.

This operator offers us an opportunity to realize n − n̄ transition
through scattering experiments.
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Backup slides
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Majorana phase constraints

The plane-wave expansion of a general Majorana field ψm is

ψm(x) =

∫
d3p

(2π)3/2
√

2E

∑
s

{
f (p, s)u(p, s)e−ip·x + λf †(p, s)v(p, s)e ip·x

}
.

where λ is the creation phase factor and can be chosen arbitrarily. Now
applying C transformation and Majorana condition,

iγ2ψ∗m(x) = λ∗ψm(x),

yields

Cψm(x)C−1 = ηcλ
∗ψm(x),

i.e. Cf (p, s)C−1 = ηcλ
∗f (p, s) and Cf †(p, s)C−1 = ηcλ

∗f †(p, s).
Since C is a unitary operator, Hermitian conjugate shows η∗cλ is real.
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Majorana phase constraints

Under CP, we find η∗pη
∗
cλ must be imaginary, or η∗p must be imaginary.

Under T, we have ηtλ must be real.
Under CPT, we have

CPTψm(x)(CPT)−1 = −ηcηpηtγ5ψ∗m(−x) ,

or

CPTf (p, s)(CPT)−1 = sλ∗ηcηpηt f (p,−s) ,

CPTf †(p, s)(CPT)−1 = −sληcηpηt f †(p,−s) .

Notice CPT is antiunitary and define CPT = KUcpt , where Ucpt denotes
a unitarity operator. We find ηcηpηt is pure imaginary!.

C: η∗cλ is real;

CP: η∗pη
∗
cλ is imaginary or η∗p is imaginary;

T: ηtλ is real;

CPT: ηcηpηt is imaginary. ⇒ ηcηt is real.

Notice order does not matter and no constraint for ηcηp.
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Phase constraints for Dirac field in B-L violation theories

The plane-wave expansion of a Dirac field ψ(x) is given by

ψ(x) =

∫
d3p

(2π)3/2
√

2E

∑
s=±

{
b(p, s)u(p, s)e−ip·x + d†(p, s)v(p, s)e ip·x

}
Construct a Majorana field from Dirac fields:

ψm±(x) =
1√
2

(ψ(x)± Cψ(x)C†)

then plane-wave expansion is

ψm±(x) =

∫
d3p

(2π)3/2
√

2E

∑
s

{
w±(p, s)u(p, s)e−ip·x ± ηcw†±(p, s)v(p, s)e ip·x

}
.

where wm±(p, s) ≡ 1√
2

[b(p, s)± ηcd(p, s)] and λ = ±ηc . We find the

same phase constraints for Dirac fields as Majorana fields.
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Implications of the CPT phases

4×4 effective Hamiltonian framework
Work in the basis |n(p,+)〉, |n̄(p,+)〉, n(p,−)〉, |n̄(p,−)〉.
[SG and Jafari (2015)]
Spin-dependent SM effects involving transverse magnetic fields could
realize n − n̄ transitions in which the particle spin flips without magnetic
quenching.
However, it is sensitive to the CPT phase constraint.
Consider n − n̄ oscillate in a static B0 with ω0 ≡ −µnB0. Apply a static B1

suddenly at t = 0 and define ω1 ≡ −µnB1. The Hamiltonian matrix at t > 0 is

H =


M + ω0 δ ω1 0

δ M − ω0 0 −ω1

ω1 0 M − ω0 −δη2
cpt

0 −ω1 −δη2
cpt M + ω0

 ,

where δ denotes a n(+)→ n̄(+) transition matrix element.
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B-L violation and theories of self-conjugate fermions

In 1967, in attempting to rationalize the spectral pattern of the low-lying,
light hadrons, Carruthers discovered a class of theories for which the CPT
theorem does not hold. [Carruthers, 1967]

The pions form a self-conjugate isospin multiplet (π+, π0, π−), but the
kaons form pair-conjugate multiplets (K+,K 0) and (K̄ 0,K−).

Carruthers discovered that free theories of self-conjugate bosons with
half-integer isospin are nonlocal, that the commutator of two
self-conjugate fields with opposite isospin components do not vanish at
space-like separations. [Carruthers, 1967]

Same conclusion for theories of arbitrary spin. [Lee, 1967; Fleming and Kazes,

1967; Jin, 1967]
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B-L violation and theories of self-conjugate fermions

Failure of weak local communitivity ⇒ CPT symmetry is not expected to
hold, nor should the CPT theorem of Greenberg apply.
[Carruthers, 1968; Streater and Wightman, 2000; Greenberg, 2002]

The conclusion here is it is possible to have self-conjugate theories of
isospin I = 0, but it is not possible to have self-conjugate theories of I =
1/2.
Note neutron and antineutron are members of pair-conjugate I = 1/2
multiplets. In addition, the quark-level operators that generate n − n̄
oscillations [Rao & Shrock, 1982] would also produce p − p̄ oscillations
under the isospin transformation u ↔ d .

Therefore, to study n − n̄ oscillations in QCD, Isospin symmetry must be
broken.
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MIT bag model VS Lattice QCD

[Syritsyn, Buchoff, Schroeder and Wasem, (2015)]
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MIT bag model VS Lattice QCD

[Syritsyn, Buchoff, Schroeder and Wasem, (2015)]
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CP transformation properties

The CP transformations of non-vanishing operators are:

O1 = ψTCψ + h.c.
CP

=⇒ −(ηcηp)2 ,

O2 = ψTCγ5ψ + h.c.
CP

=⇒ −(ηcηp)2 ,

O4 = ψTCγµγ5ψ ∂
νFµν + h.c.

CP
=⇒ −(ηcηp)2

Even with earlier determined phase constraint that η2
p = −1, CP

transformation properties of the operators are not definite and only depend
on η2

c .
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CP violation in n − n̄ oscillations

[McKeen and Nelson, 2015]
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