Dark Matter Transporting Mechanism Explaining Positron Excesses

Seodong Shin

1702.02944 with Doojin Kim, Jong-Chul Park

Cosmic-ray excesses: e+

AMS-02 press release (Dec, 2016)

Cosmic-ray excesses: e+

AMS-02 press release (Dec, 2016)

E > 10 GeV

- DM or Pulsars?
 Need more data
- Similar in old data of AMS-02 & PAMELA

Energy of e+: mass range of thermal DM

Energy of e+: mass range of thermal DM

Figure by Doojin

- Mostly from DM nearby the Earth (≤1kpc): diffusion & E loss
- Observed flux: O(1000) times larger than that in thermal DN $\Phi \propto \rho^2 \langle \sigma v \rangle$ boosted

- Mostly from DM nearby the Earth (≤1kpc): diffusion & E loss
- Observed flux: O(1000) times larger than that in thermal DM (s-wave dominant) $\Phi \propto \rho^2 \langle \sigma v \rangle$ need enhancement

 $\Phi \propto \rho^2 \langle \sigma v \rangle$ boosted $\langle \sigma v \rangle \gg O(10^{-26} \text{ cm}^3/\text{s})$

$$\Phi \propto \rho^2 \langle \sigma v \rangle$$
 boosted $\langle \sigma v \rangle \gg O(10^{-26} \text{ cm}^3/\text{s})$

• Sommerfeld enhancement of $\langle \sigma v \rangle$ as $1/v \rightarrow \langle \sigma v \rangle \gg \langle \sigma v \rangle_{\rm f.o}$

 $\Phi \propto \rho^2 \langle \sigma v \rangle$ boosted $\langle \sigma v \rangle \gg O(10^{-26} \text{ cm}^3/\text{s})$

• Sommerfeld enhancement of $\langle \sigma v \rangle$ as $1/v \rightarrow \langle \sigma v \rangle \gg \langle \sigma v \rangle_{\text{f.o.}}$

Hisano, Matsumoto, Nojiri, 2002

Arkani-Hamed, Finkbeiner, Slatyer, Weiner, 2008

$$\Phi \propto \rho^2 \langle \sigma v \rangle$$
 boosted $\langle \sigma v \rangle \gg O(10^{-26} \text{ cm}^3/\text{s})$

- Sommerfeld enhancement of $\langle \sigma v \rangle$ as $1/v \rightarrow \langle \sigma v \rangle \gg \langle \sigma v \rangle_{\text{f.o.}}$ Hisano, Matsumoto, Nojiri, 2002 Arkani-Hamed, Finkbeiner, Slatyer, Weiner, 2008
- Late decaying dark partner fits the relic density while $\langle \sigma v \rangle \approx \langle \sigma v \rangle_{\rm f.o.} \gg O(10^{-26} \, {\rm cm^3/s})$ Fairbairn, Zupan, 0810.4147

$$\Phi \propto \rho^2 \langle \sigma v \rangle$$
 boosted $\langle \sigma v \rangle \gg O(10^{-26} \text{ cm}^3/\text{s})$

- Sommerfeld enhancement of $\langle \sigma v \rangle$ as $1/v \rightarrow \langle \sigma v \rangle \gg \langle \sigma v \rangle_{\text{f.o.}}$ Hisano, Matsumoto, Nojiri, 2002 Arkani-Hamed, Finkbeiner, Slatyer, Weiner, 2008
- Late decaying dark partner fits the relic density while $\langle \sigma v \rangle \approx \langle \sigma v \rangle_{\text{f.o.}} \gg O(10^{-26} \text{ cm}^3/\text{s})$

Fairbairn, Zupan, 0810.4147

 $\Phi \propto \rho^2 \langle \sigma v \rangle$ boosted

Locally clumpy DM

 $\Phi \propto \rho^2 \langle \sigma v \rangle$ boosted

Locally clumpy DM

N-body simulation: ≤10 enhanced at most

Lavalle, Yuan, Maurin, Bi. 0709.3634

e⁺ excess: DM decay?

 $\Phi \propto \rho \Gamma$: no boost factor needed for $\tau \sim 10^{26} \ {\rm sec}$

Chen, Takahashi, Yanagida, 0809.0792

e⁺ excess: DM decay?

 $\Phi \propto \rho \Gamma$: no boost factor needed for $\tau \sim 10^{26}$ sec

Chen, Takahashi, Yanagida, 0809.0792

Hard to avoid the bounds from γ -ray data (dSphs, GC)

Ando, Ishiwata, 1502.02007

Alternatives?

Non-thermal models? bounded from γ -ray data

Astrophysical sources like pulsars, SN remnants?

Hooper, Blasi, Serpico, 0810.1527 Hu et al., 0901.2520

Alternatives?

Non-thermal models? bounded from γ -ray data

Astrophysical sources like pulsars, SN remnants?

Hooper, Blasi, Serpico, 0810.1527 Hu et al., 0901.2520

Not the END

High DM density at GC!!

Think about using the DM around Galactic Center to explain cosmic-ray excesses

Kim, Park, **SS**, 1702.02944

High DM density at GC!!

Think about using the DM around Galactic Center to explain cosmic-ray excesses

Kim, Park, **SS**, 1702.02944

BUT HOW??? charged particles don't reach to the Earth

Think about using the DM around Galactic Center to explain cosmic-ray excesses

Kim, Park, **SS**, 1702.02944

Effectively TRANSPORT DM: GC → Earth

Non-minimal dark sector

- χ_h : heavier DM (dominant)
- ϕ : long-lived dark sector state
- : lighter DM (subdominant)

Kim, Park, **SS**, 1702.02944

Non-minimal dark sector

- χ_h : heavier DM (dominant)
- ϕ : long-lived dark sector state

Non-minimal dark sector

- χ_h : heavier DM (dominant)
- ϕ : long-lived dark sector state

Galactic Center Near the Earth χ_l χ_h χ_h χι

Non-minimal dark sector

- χ_h : heavier DM (dominant)
- ϕ : long-lived dark sector state
- χι: lighter DM (subdominant)

Kim, Park, **SS**, 1702.02944

Non-minimal dark sector

- χ_h : heavier DM (dominant)
- ϕ : long-lived dark sector state
- χ_l : lighter DM (subdominant)

Kim, Park, **SS**, 1702.02944

Non-minimal dark sector

- χ_h: heavier DM (dominant)
- ϕ : long-lived dark sector state
- χι: lighter DM (subdominant)

Galactic Center

Near the Earth

Kim, Park, **SS**, 1702.02944

Example: boosted dark matter

Agashe, Cui, Necib, Thaler, 1405.7370

Assisted freeze-out

(Flux of relic χ_1 : small) non-relativistic

Belanger, Park, 1112.4491

Non-minimal dark sector

- χ_h : heavier DM (dominant)
- ϕ : long-lived dark sector state
- χ_l : lighter DM (subdominant)

Example: boosted dark matter with ϕ

Assisted freeze-out

(Flux of relic χ_1 : small) non-relativistic

Belanger, Park, 1112.4491

Non-minimal dark sector

- χ_h : heavier DM (dominant)
- ϕ : long-lived dark sector state
- χ_l : lighter DM (subdominant)

Energy scale of the spectrum ~ 1 TeV (AMS-02)

Non-minimal dark sector

- χ_h : heavier DM (dominant)
- ϕ : long-lived dark sector state
- χ_l: lighter DM (subdominant)

Galactic Center

Near the Earth

Kim, Park, **SS**, 1702.02944

GC to Earth ~ 8 kpc distance: 8×10¹¹ sec for travel

Non-minimal dark sector

- χ_h : heavier DM (dominant)
- ϕ : long-lived dark sector state
- χ_i: lighter DM (subdominant)

Galactic Center

Near the Earth

Kim, Park, **SS**, 1702.02944

GC to Earth ~ 8 kpc distance: 8×10¹¹ sec for travel

 $\gamma_{\phi} \tau_{\phi}$ boost factor life time at rest

Non-minimal dark sector

- χ_h : heavier DM (dominant)
- φ: long-lived dark sector state
- χι: lighter DM (subdominant)

Galactic Center

Near the Earth

Kim, Park, **SS**, 1702.02944

GC to Earth ~ 8 kpc distance: 8×10¹¹ sec for travel

- CMB bound
- m_{θ} : > 2 m_{ϵ}

boost factor life time at rest $\tau_\phi \lesssim 10^{12} \sec$ for $\rho_\phi \gtrsim 10^{-11} \ \rho_{\rm CDM}$

BBN bounds

Non-minimal dark sector

- χ_h: heavier DM (dominant)
- φ: long-lived dark sector state
- χι: lighter DM (subdominant)

Galactic Center

Near the Earth

Kim, Park, **SS**, 1702.02944

GC to Earth ~ 8 kpc distance: 8×10¹¹ sec for travel

- CMB bound
- m_{ϕ} : > 2 m_{e}
- BBN bounds

boost factor life time at rest $\gamma_{\phi} \lesssim 10^6 \qquad 10^6 \lesssim \tau_{\phi} \lesssim 10^{12} \sec$ practical maximum $m_{\chi_h} \sim 1 \, {\rm TeV}$

Non-minimal dark sector

- χ_h: heavier DM (dominant)
- ϕ : long-lived dark sector state
- χl : lighter DM (subdominant)

Galactic Center

Near the Earth

Kim, Park, **SS**, 1702.02944

GC to Earth ~ 8 kpc distance: 8×10¹¹ sec for travel

- CMB bound
- m_{ϕ} : > 2 m_{e}
- BBN bounds

Non-minimal dark sector

- χ_h : heavier DM (dominant)
- φ: long-lived dark sector state
- χι: lighter DM (subdominant)

Galactic Center

Near the Earth

Kim, Park, **SS**, 1702.02944

GC to Earth ~ 8 kpc distance: 8×10¹¹ sec for travel

- CMB bound
- m_{ϕ} : > 2 m_{e}

 $\gamma_{\phi} au_{\phi}$ $\gamma_{\phi}\sim 10^4\,,\; au_{\phi}\sim 10^8\,{
m sec}$ Good reference

BBN bounds

Non-minimal dark sector

- χ_h : heavier DM (dominant)
- φ: long-lived dark sector state
- χι: lighter DM (subdominant)

Galactic Center

Near the Earth

Kim, Park, **SS**, 1702.02944

GC to Earth ~ 8 kpc distance: 8×10¹¹ sec for travel

- CMB bound
- m_{ϕ} : > 2 m_{e}

 $\gamma_{\phi} au_{\phi}$ $\gamma_{\phi}\sim 10^4\,,\; au_{\phi}\sim 10^8\,{
m sec}$ Good reference

• BBN bound $(\rho_{\phi}/\rho_{\rm CDM}) \times (E(\gamma, e^{\pm})/E_{\phi}) \lesssim 2 \times 10^{-5}$ (Relaxed: 10-2 for $\tau_{\phi} \sim 10^6$ sec)

Non-minimal dark sector

- χ_h : heavier DM (dominant)
- φ: long-lived dark sector state
- χ_i: lighter DM (subdominant)

Galactic Center

Near the Earth

Kim, Park, **SS**, 1702.02944

GC to Earth ~ 8 kpc distance: 8×10¹¹ sec for travel

- CMB bound
- m_{ϕ} : > 2 m_{e}
- BBN bound

Non-minimal dark sector

- χ_h: heavier DM (dominant)
- ϕ : long-lived dark sector state
- χl : lighter DM (subdominant)

Galactic Center

Near the Earth

Kim, Park, **SS**, 1702.02944

GC to Earth ~ 8 kpc distance: 8×10¹¹ sec for travel

- CMB bound
- m_{ϕ} : > 2 m_{e}

BBN bound

 $m_{\phi} \lesssim 30 \, \mathrm{MeV}$ for $n_{\phi} \simeq n_{\chi_h}$ $m_{\phi} \, \mathrm{larger}$ for $n_{\phi} \ll n_{\chi_h}$

> $\gamma_{\phi} \sim 10^4 \,, \,\, au_{\phi} \sim 10^8 \, {
> m sec}$ Still Good reference

Non-minimal dark sector

- χ_h: heavier DM (dominant)
- ϕ : long-lived dark sector state
- χ_l: lighter DM (subdominant)

Kim, Park, **SS**, 1702.02944

Astrophysical constraints

- γ -rays from small region (dSphs, GC): ϕ decays far away from it
- \bar{p} through EW gauge boson radiation: not strong for $m_{DM} \sim 1 \text{TeV}$

Cavasonza et al., 1612.06634 Giesen et al., 1504.04276

Non-minimal dark sector

- χ_h: heavier DM (dominant)
- ϕ : long-lived dark sector state
- χ_l : lighter DM (subdominant)

Kim, Park, **SS**, 1702.02944

Safe from various cosmological & astrophysical constraints!

Diffusion equation

$$\frac{\partial}{\partial t} f(\vec{x}, E) - \vec{\nabla} \cdot \left[K(\vec{x}, E) \vec{\nabla} f(\vec{x}, E) \right] - \frac{\partial}{\partial E} \left[b(\vec{x}, E) f(\vec{x}, E) \right] = Q(\vec{x}, E)$$
 diffusion energy loss source
$$\frac{d\Phi}{dE} = \frac{c}{4\pi} f$$

Diffusion equation

$$\frac{\partial}{\partial t} f(\vec{x}, E) - \vec{\nabla} \cdot \left[K(\vec{x}, E) \vec{\nabla} f(\vec{x}, E) \right] - \frac{\partial}{\partial E} \left[b(\vec{x}, E) f(\vec{x}, E) \right] = Q(\vec{x}, E)$$
 diffusion energy loss source
$$\frac{d\Phi}{dE} = \frac{c}{4\pi} f$$

$$Q(\vec{x}, E) = n_{\phi}(\vec{x}) \, \Gamma_{\phi}^{\text{lab}} \, \frac{dN}{dE}$$

$$\Gamma_{\phi}^{\text{lab}} = \Gamma_{\phi}/\gamma_{\phi}$$

Diffusion equation

$$\frac{\partial}{\partial t} f(\vec{x}, E) - \vec{\nabla} \cdot \left[K(\vec{x}, E) \vec{\nabla} f(\vec{x}, E) \right] - \frac{\partial}{\partial E} \left[b(\vec{x}, E) f(\vec{x}, E) \right] = Q(\vec{x}, E)$$
 diffusion energy loss source
$$\frac{d\Phi}{dE} = \frac{c}{4\pi} f$$

$$\frac{d\Phi}{dE} = \frac{c}{4\pi} f$$

$$\frac{d\Phi}{dE} = \frac{c}{4\pi} f$$

$$\frac{d\Phi}{dE} = \frac{c}{4\pi} f$$

$$\frac{d\Phi}{dE} = \frac{c}{4\pi} f$$

$$\frac{d\Phi_{\phi}(\vec{x})}{d\Omega_{x_*}dE_{\phi}} = \left(\frac{1}{2}\right) \cdot \frac{1}{4\pi} \int_{\text{l.o.s}} ds_{x_*} \frac{n_{\chi_h}^2(\vec{y})}{2} \langle \sigma v \rangle_{\chi_h \chi_h \to \phi \phi} \times e^{-\frac{|\vec{x} - \vec{y}|}{c} \Gamma_{\phi}^{\text{lab}}} \frac{dN_{\phi}}{dE_{\phi}}$$

$$\Phi_{\phi} = n_{\phi} \cdot v_{\phi}$$

like photon spectrum + ϕ decay factor in propagation

 $\Gamma_{\phi}^{\mathrm{lab}} = \Gamma_{\phi}/\gamma_{\phi}$

$$\frac{d\Phi_{\phi}(\vec{x})}{d\Omega_{x_*}dE_{\phi}} = \left(\frac{1}{2}\right) \cdot \frac{1}{4\pi} \int_{\mathrm{l.o.s}} ds_{x_*} \frac{n_{\chi_h}^2(\vec{y})}{2} \langle \sigma v \rangle_{\chi_h \chi_h \to \phi \phi} \times e^{-\frac{|\vec{x} - \vec{y}|}{c} \Gamma_{\phi}^{\mathrm{lab}}} \frac{dN_{\phi}}{dE_{\phi}}$$

$$\Phi_{\phi} = n_{\phi} \cdot v_{\phi}$$

$$\frac{dN_{\phi}}{dE_{\phi}} = 2 \cdot \delta(E_{\phi} - m_{\chi_h})$$

$$y^2 = r_x^2 + z_x^2 + s_{x_*}^2 - 2\sqrt{r_x^2 + z_x^2} \, s_{x_*} \cos\theta_{x_*}$$

Usual halo of χ_h : only O(1) enhancement (small flux)

$$\frac{d\Phi_{\phi}(\vec{x})}{d\Omega_{x_*}dE_{\phi}} = \left(\frac{1}{2}\right) \cdot \frac{1}{4\pi} \int_{\mathrm{l.o.s}} ds_{x_*} \frac{n_{\chi_h}^2(\vec{y})}{2} \langle \sigma v \rangle_{\chi_h \chi_h \to \phi \phi} \times e^{-\frac{|\vec{x}-\vec{y}|}{c} \Gamma_{\phi}^{\mathrm{lab}}} \frac{dN_{\phi}}{dE_{\phi}}$$

$$\Phi_{\phi} = n_{\phi} \cdot v_{\phi}$$

$$\frac{dN_{\phi}}{dE_{\phi}} = 2 \cdot \delta(E_{\phi} - m_{\chi_h})$$

$$y^2 = r_x^2 + z_x^2 + s_{x_*}^2 - 2\sqrt{r_x^2 + z_x^2} \, s_{x_*} \cos\theta_{x_*}$$

Usual halo of χ_h : only O(1) enhancement (small flux)

- Large uncertainty of DM density nearby the GC
- Simple toy model

$$\rho_{\chi_h}(y) = \begin{cases} \rho_0 \, \frac{(y/y_s)^{-1}}{(1+y/y_s)^2} \equiv \rho_{\rm NFW}(y) & \text{for } y \geq y_C \\ \mathcal{N} \times \rho_{\rm NFW}(y_C) & \text{for } y < y_C \end{cases},$$
 density scaling factor core size

Best fit in the fitting parameter scan y_c & N

Changing the mass parameters

- e+ takes larger energy for heavier & smaller R
- Need more detailed data

Conclusions

- Effectively transporting DM by long-lived dark sector particle:
 Huge flux of cosmic-rays ~ r₀
- Reference: e+ excess from AMS-02 (fit very well)
- Basically applied to any kind of cosmic-ray excesses
- Future work: model construction, γ-ray from the whole sky, anisotropy of the spectrum (level of pulsars?)

AMS-02 press release

AMS-02 future

Spectrum Isotropy

Late decaying dark partner

Fairbairn, Zupan, 0810.4147

 Φ increase by dN/dE instead of $\rho^2 \langle \sigma v \rangle$?

 Φ basically depends on $n^2 = (\rho/m)^2$

For example, cascade decays can increase dN/dE but decrease flux by increasing m to fit the data

EW gauge boson radiation

 $\overline{\mathbf{p}}/\mathbf{p}$ $m_{DM}=5TeV$ m_{DM}=3TeV-10 m_{DM}=1TeV 10 m_{DM}=425GeV 10-5 50 350 100 150 200 300 400 250 Kinetic energy / GeV

Black: AMS-02, Gray: PAMELA

Giesen et al., 1504.04276

10-22 cm3/s level upper bound

While we leave the detailed calculation for future [37], our (rough) assessment finds that $\rho_{\phi}/\rho_{\rm DM} \lesssim 10^{-5}$ for $m_{\chi_h} = 1$ TeV, $m_{\phi} = 0.5$ GeV, and $m_{\chi_l} = 0.1$ GeV in a dark U(1)_X scenario. Note again that this parameter choice provides the best fit as displayed in the left panel of FIG. 3.

Liu, Bi, Lin, Yin, 1602.01012

Essig et al., 1311.0029

Flux of atmospheric neutrino

 θ : zenith angle

Energetic neutrino ~ 10⁻⁴ cm⁻² s⁻¹

Sub-Sample	SK-I		SK-II SK-III		SK-IV		Total							
	Livetime (days)													
FC and PC	1489		799		518		1993		4799					
UPMU	1646		828		636		1993		5103					
			Number of Events								Interaction [%]			
FC e -like $\times 0.1$	or sr	maller									$\nu_e CC$	ν_{μ} CC	NC	
sub-GeV single-ring	3288	(3104.7)	1745	(1632.8)	1209	(1100.7)	4251	(4072.8)	10493	(9911.0)	94.1	1.5	4.4	
multi-GeV single-ring	856	(842.8)	396	(443.7)	274	(299.5)	1060	(1080.0)	2586	(2666.0)	86.3	3.2	10.5	
multi-GeV multi-ring	449	(470.1)	267	(252.1)	140	(161.9)	634	(654.9)	1490	(1539.0)	73.0	7.6	19.4	
FC μ -like														
sub-GeV single-ring	3184	(3235.6)	1684	(1731.8)	1139	(1152.0)	4379	(4394.7)	10386	(10514.0)	0.9	94.2	4.9	
multi-GeV single-ring	712	(795.4)	400	(423.9)	238	(273.9)	989	(1051.5)	2339	(2544.7)	0.4	99.1	0.5	
multi-GeV multi-ring	603	(656.5)	337	(343.8)	228	(237.9)	863	(927.8)	2031	(2166.0)	3.4	90.5	6.1	
PC														
stop	143	(145.3)	77	(73.2)	54	(53.3)	237	(229.0)	511	(500.8)	12.7	81.7	5.6	
thru	759	(783.8)	350	(383.0)	290	(308.8)	1093	(1146.7)	2492	(2622.3)	0.8	98.2	1.0	
UPMU														
stop	432.0	(433.7)	206.4	(215.7)	193.7	(168.3)	492.7	(504.1)	1324.8	(1321.8)	1.0	97.7	1.3	
non-showering	1564.4	(1352.4)	726.3	(697.5)	612.9	(504.1)	1960.7	(1690.3)	4864.3	(4244.4)	0.2	99.4	0.3	
showering	271.7	(291.6)	110.1	(107.0)	110.0	(126.0)	350.1	(274.4)	841.9	(799.0)	0.1	99.8	0.1	

Sub-Sample	SK-I		SK-II SK-III		SK-IV		Total							
	Livetime (days)													
FC and PC	1489		799		518		1993		4799					
UPMU	1646		828		636		1993		5103					
			Number of Events								Interaction [%]			
FC e-like × 0.1	or sr	maller									$\nu_e CC$	ν_{μ} CC	NC	
sub-GeV single-ring	3288	(3104.7)	1745	(1632.8)	1209	(1100.7)	4251	(4072.8)	10493	(9911.0)	94.1	1.5	4.4	
multi-GeV single-ring	856	(842.8)	396	(443.7)	274	(299.5)	1060	(1080.0)	2586	(2666.0)	86.3	3.2	10.5	
multi-GeV multi-ring	449	(470.1)	267	(252.1)	140	(161.9)	634	(654.9)	1490	(1539.0)	73.0	7.6	19.4	
FC μ -like														
sub-GeV single-ring	3184	(3235.6)	1684	(1731.8)	1139	(1152.0)	4379	(4394.7)	10386	(10514.0)	0.9	94.2	4.9	
multi-GeV single-ring	712	(795.4)	400	(423.9)	238	(273.9)	989	(1051.5)	2339	(2544.7)	0.4	99.1	0.5	
multi-GeV multi-ring	603	(656.5)	337	(343.8)	228	(237.9)	863	(927.8)	2031	(2166.0)	3.4	90.5	6.1	
PC														
stop	143	(145.3)	77	(73.2)	54	(53.3)	237	(229.0)	511	(500.8)	12.7	81.7	5.6	
thru	759	(783.8)	350	(383.0)	290	(308.8)	1093	(1146.7)	2492	(2622.3)	0.8	98.2	1.0	
UPMU														
stop	432.0	(433.7)	206.4	(215.7)	193.7	(168.3)	492.7	(504.1)	1324.8	(1321.8)	1.0	97.7	1.3	
non-showering	1564.4	(1352.4)	726.3	(697.5)	612.9	(504.1)	1960.7	(1690.3)	4864.3	(4244.4)	0.2	99.4	0.3	
showering	271.7	(291.6)	110.1	(107.0)	110.0	(126.0)	350.1	(274.4)	841.9	(799.0)	0.1	99.8	0.1	

Collider as a heavy-state probe

Conventional colliders

- ☐ Head-on collision of light SM-sector (stable) particles
- to produce heavier states
- and study resulting phenomenology

Dark matter colliders

- ☐ Collision of light dark-sector (stable)
 particles onto a target
- ☐ to produce heavier dark-sector states
- and study resulting phenomenology

Target/ hadron absorber

Active muon sh

SHiP as a Hidden Sector Detector

Detection

- ☐ Etc.
- \square $\chi_B + \nu_\tau$ detector $\rightarrow X + \text{recoil } e/p$
 - ❖ Prompt scenario: $X \to \chi_B A'$, $A' \to e^+e^-$ at ν_τ detector, **3 (hopefully) resolvable** objects
 - ❖ "Long-lived" scenario: 1) $X \to \chi_B A'^* \to \chi_B e^+ e^-$ 2) $X \to \chi_B A'$,, $A' \to e^+ e^-$, detection of electron/positron at the calorimeter complex → 3 resolvable objects

SHiP

Production of χ_1 : collide (tau) neutrino detector

Assisted freeze-out: χ_1 - SM interaction does not have to be larger than the weak scale because ann. cross section ~ 1/m^2

Popular figure shown everywhere for the search of WIMP

m_{DM} [GeV]

Some (strong) bounds

- γ -rays from dSphs
- Antiproton ratios

but some hints as well (although bkg. is not fully understood)

- γ -rays from the galactic center
- Positron ratio
- Neutrino signals

Some (strong) bounds

- γ -rays from dSphs
- Antiproton ratios

but some hints as well (although bkg. is not fully understood)

- γ -rays from the galactic center
- Positron ratio

DM signal not sensitive to direct detection & colliders

Neutrino signals

Secluded Dark Matter?

Secluded set-up

Huh, Kim, Park, Park, 0711.3528
Pospelov, Ritz, Voloshin, 0711.4866
Kim, **SS**, 0901.2609
& many others.....

- Size of DM interaction with SM is small: avoid strong bounds from direct detection & colliders
- Processes for the relic/ID are separated from DD or collider: with more particles in the dark sector

Search of Secluded Dark Matter

How do you search such a hidden DM?

- Indirect detection can be a key guide: provide reference parameters for the searches in colliders & DD
- Relativistic scattering of DM with a target

Kim, Lee, Park, **SS**, 1601.05089 & many others.....

Search of Secluded Dark Matter

How do you search such a hidden DM?

- Indirect detection can be a key guide:
 provide reference parameters for the searches in colliders & DD
 Kim, Lee, Park, SS, 1601.05089
- Relativistic scattering of DM with a target

Search of Secluded Dark Matter

How do you search such a hidden DM?

- Relativistic scattering of DM with a target

- Some components of DM are relativistic: boosted DM
 Agashe, Cui, Necib, Thaler, 1405.7370
 Kong, Mohlaberg, Park, 1411.6632
- (Light) DM is produced in fixed target experiments

Bjorken, Essig, Schuster, Toro, 0906.0580 Batell, Pospelov, Ritz, 0906.5614

Boosted DM

Minimal model example

Belanger, Park, 1112.4491

Agashe, Cui, Necib, Thaler, 1405.7370

Boosted DM

Minimal model example

Belanger, Park, 1112.4491

Agashe, Cui, Necib, Thaler, 1405.7370

Boosted DM

Minimal model example

 $x=m_{\chi_1}/T$

Detection of boosted DM

Dominant relic χ_h : but do not directly interact with SM

• $\chi_h \chi_h \rightarrow \chi_1 \chi_1$ (current universe) relativistic: need a huge detector : flux small $m_{\chi_h} \gtrsim \mathcal{O}(10\,\mathrm{GeV})$

Detection of boosted DM

Dominant relic χ_h : but do not directly interact with SM

through
$$\chi_1$$

• $\chi_h \chi_h \rightarrow \chi_1 \chi_1$ (current universe) relativistic: need a huge detector : flux small $m_{\chi_h} \gtrsim \mathcal{O}(10\,\mathrm{GeV})$

	Volume [Mt]	$E_e^{\rm thres}$ [GeV]	$E_p^{ m thres} \ [{ m GeV}]$	$ heta_e^{ m res}$	$ heta_p^{ m res}$
Super-K	0.0224	0.01	1.07	3°	3°
Hyper-K	0.56	0.01	1.07	3°	3°
DUNE	0.04	0.03	0.05	1°	5°
				better	

Detection of boosted DM

Dominant relic χ_h : but do not directly interact with SM

- $\chi_h \chi_h \rightarrow \chi_1 \chi_1$ (current universe) relativistic: need a huge detector : flux small
- Fixed target experiments relativistic: high intensity increases flux

Signal observations in both cases

Counting N_{events} over the expected background neutrino

Super interesting but not easy to confirm the signals over *v*

Signal observations in both cases

Counting N_{events} over the expected background neutrino

Super interesting but not easy to confirm the signals over *v*

Modification of minimal models make them promising

- From Sun: a small coupling of χ_h SM or self-interaction of χ_h
 Berger, Cui, Zhao, 1410.2246
 Kong, Mohlaberg, Park, 1411.6632
 Alhazmi, Kong, Mohlaberg, Park, 1611.09866
- More complicated dark sector (just like SM?): extraordinary signal
 Kim, Park, SS, 1612.06867

Cascade process in detection of DM

- Heavier (unstable) dark partner χ_2 : $m_{\chi_2} > m_{\chi_1}$
- Mediator ϕ : not specified but assume either spin 0 or 1

Inelastic
Boosted DM
(but not has
to be BDM)

- Heavier (unstable) dark partner χ_2 : $m_{\chi_2} > m_{\chi_1}$
- Mediator ϕ : not specified but assume either spin 0 or 1

- Heavier (unstable) dark partner χ_2 : $m_{\chi_2} > m_{\chi_1}$
- Mediator ϕ : not specified but assume either spin 0 or 1
- Secondary (or more) process by χ_2 : cascade signal (collider?)

• Secondary (or more) process by χ_2 : cascade signal (collider?)

- Focus on the detection prospects in huge neutrino detectors in this talk
- Fixed target experiments: future work

Detection prospects

Energy spectrum

- Everything is relativistic: need large energy to have χ_2 (large γ_{χ_1})
- ullet Electron scattering with one vector mediator: light DM with huge $\gamma_{2/2}$

Energy spectrum: e-scattering

- Everything is relativistic: need large energy to have χ_2 (large γ_{χ_1})
- Electron scattering with one vector mediator: light DM with huge γ_{χ_1}

Energy spectrum: e-scattering

e-scattering preferred over p-scattering

- Primary scattering cross section large when momentum transfer small
- <u>Eth low</u> for e-scattering but high for p-scattering (Cherenkov detectors)
 <u>Kamiokande</u>
- Proton scattering is suppressed by atomic form factor

e-scattering: detection prospects

Super/Hyper-K & DUNE can do it!

	Volume [Mt]	$E_e^{\rm thres}$ [GeV]	$E_p^{\rm thres}$ [GeV]	$ heta_e^{ m res}$	$ heta_p^{ m res}$
Super-K	0.0224	0.01	1.07	3°	3°
Hyper-K	0.56	0.01	1.07	3°	3°
DUNE	0.04	0.03	0.05	1°	5°
				even better	

e-scattering: detection prospects

e-scattering: sensitivities on flux

 Experiments
 $cm^{-2}s^{-1}$

 Super-K 4799 days
 7.1×10^{-7}

 Hyper-K 1 year
 3.7×10^{-7}

 Hyper-K 4799 days
 2.8×10^{-8}

 DUNE 1 year
 9.0×10^{-7}

 DUNE 4799 days
 6.9×10^{-8}

Assume no bkg. 4799 days ≈13.6 yr

e-scattering: sensitivities on flux

Assume no bkg. 4799 days ≈13.6 yr

p-scattering NOT preferred over e-scattering (Cherenkov)

- Primary scattering cross section large when momentum transfer small
- E_{th} high for proton scattering (for Cherenkov)
- Proton scattering is suppressed by atomic form factor

p-scattering NOT preferred over e-scattering (Cherenkov)

- Primary scattering cross section large when momentum transfer small
- E_{th} high for proton scattering (for Cherenkov)
- Proton scattering is suppressed by atomic form factor

p-scattering NOT preferred over e-scattering (Cherenkov)

- Primary scattering cross section large when momentum transfer small
- E_{th} high for proton scattering (for Cherenkov)
- Suppression by atomic form factor: not so severe for pp < 2 GeV

However, the cascade process is still unique

- Eth low for proton scattering for liquid Ar detectors (DUNE: Eth 50 MeV)
- Separation of two signals are more promising than e-scattering

- Eth low for proton scattering for liquid Ar detectors (DUNE: Eth 50 MeV)
- Separation of two signals super good & 3 visible objects

p-scattering: sensitivities on flux

Flux can be higher in non-minimal BDM model or fixed target experiments

toy model
$$g_{12} = 0.5, \ \epsilon = 0.0003$$

Exp.	Run time	e-ref.1	e-ref.2	p-ref.1	p-ref.2				
SK	13.6 yr	170	7.1	3500	5200	less	sensitive	than	e
HK	1 yr	88	3.7	1900	2800				
$_{ m HK}$	$13.6 \mathrm{\ yr}$	6.7	0.28	140	210				
DUNE	1 yr	190	9.0	150	1600				
DUNE	$13.6 \mathrm{\ yr}$	14	0.69	11	120				

Assume no bkg.

unit: 10^{-7} cm⁻²s⁻¹

p-scattering: sensitivities on flux

Flux can be higher in non-minimal BDM model or fixed target experiments

$$g_{12} = 0.5, \ \epsilon = 0.0003$$

Exp.	Run time	e-ref.1	e-ref.2	p-ref.1	p-ref.2		
SK	13.6 yr	170	7.1	3500	5200		
HK	1 yr	88	3.7	1900	2800	13.6 yr of HK improves	
$_{ m HK}$	$13.6 \mathrm{\ yr}$	6.7	0.28	140	210		
DUNE	1 yr	190	9.0	150	1600	the sensitivity	
DUNE	$13.6 \mathrm{\ yr}$	14	0.69	11	120		
Ass	ume no k	okg.	unit:	10^{-7}cm^{-2}	$^2\mathrm{s}^{-1}$		

p-scattering: sensitivities on flux

Flux can be higher in non-minimal BDM model or fixed target experiments

$$g_{12} = 0.5, \ \epsilon = 0.0003$$

	Exp.	Run time	e-ref.1	e-ref.2	$p ext{-ref.}1$	p-ref.2	•
_	SK	13.6 yr	170	7.1	3500	5200	Remarkable
_	HK	1 yr	88	3.7	1900	2800	improvement
	$_{ m HK}$	$13.6 \mathrm{\ yr}$	6.7	0.28	140	210	in DUNE!!!
Ι	DUNE	1 yr	190	9.0	150	1600	
I	DUNE	$13.6 \mathrm{\ yr}$	14	0.69	11	120	Promising
Assume no bkg.			unit:	10^{-7}cm^{-2}	2_{s}^{-1} (.	3 simultaneous signals)	

Background may be negligible (dedicated analysis needed)

Kim, Park, SS, Work in progress

- Not energetic muon $\mu \rightarrow e \nu_e \nu_\mu$ (e + ℓ)
- $n\nu\tau \to p\tau \to p\ell\nu\ell \nu\tau (p + \ell)$ out out by requiring 3 visible objects
- $n\nu_e \rightarrow pe \rightarrow 3e + ...$ by hadronized p (or just by NC); ring shape & energy

Background may be negligible (dedicated analysis needed)

Kim, Park, SS, Work in progress

- Not energetic muon $\mu \rightarrow e \nu_e \nu_\mu$ (e + ℓ): cut out by requiring E > 0.1 GeV
- $n\nu\tau \to p\tau \to p\ell\nu\ell \nu\tau (p + \ell)$: cut out by requiring 3 visible objects
- $n\nu_e \rightarrow pe \rightarrow 3e + ...$ by hadronized p (or just by NC) and shape & energy

Background may be negligible (dedicated analysis needed)

Kim, Park, SS, Work in progress

Cherenkov light detectors (Kamiokande)

- Not energetic muon $\mu \rightarrow e \nu_e \nu_\mu$ (e + ℓ): cut out by requiring E > 0.1 GeV
- $n\nu\tau \to p\tau \to p\ell\nu\ell \nu\tau (p + \ell)$: cut out by requiring 3 visible objects
- $n\nu_e \rightarrow pe \rightarrow 3e + ...$ by hadronized p (or just by NC): ring shape & energy

Our signal (e-scattering)

Primary signal (clean): 0.1 - 0.3 GeV

Secondary signal (vague): higher E

Hadronized background

e from CC (clean): higher E

e from p/n (vague): lower E

Background may be negligible (dedicated analysis needed)

Kim, Park, SS, Work in progress

Cherenkov light detectors (Kamiokande)

- Not energetic muon $\mu \rightarrow e \nu_e \nu_\mu$ (e + ℓ): cut out by requiring E > 0.1 GeV
- $n\nu\tau \rightarrow p\tau \rightarrow p\ell\nu\ell \nu\tau (p + \ell)$: cut out by requiring 3 visible objects
- $n\nu_e \rightarrow pe \rightarrow 3e + ...$ by hadronized p (or just by NC): ring shape & energy

Our signal (e-scattering)

Primary signal (clean): 0.1 - 0.3 GeV

Secondary signal (vague): higher E

Hadronized background

e from CC (clean): higher E

e from p/n (vague): lower E

+ Number of events of $p(n) \rightarrow (2)e$ small

Background may be negligible (dedicated analysis needed)

Kim, Park, SS, Work in progress

Cherenkov light detectors (Kamiokande)

- Not energetic muon $\mu \rightarrow e \nu_e \nu_\mu$ (e + ℓ): cut out by requiring E > 0.1 GeV
- $n\nu\tau \to p\tau \to p\ell\nu\ell \nu\tau (p + \ell)$: cut out by requiring 3 visible objects
- $n\nu_e \rightarrow pe \rightarrow 3e + ...$ by hadronized p (or just by NC): ring shape & energy

Our signal (e-scattering)

Primary signal (clean): 0.1 - 0.3 GeV

Secondary signal (vague): higher E

Hadronized background

e from CC (clean): higher E

e from p/n (vague): lower E

+ Number of events of $p(n) \rightarrow (2)e$ small + directionality (GC)?

Background may be negligible (dedicated analysis needed)

Kim, Park, SS, Work in progress

Ionization from the charged track (DUNE)

- Not energetic muon $\mu \rightarrow e \nu_e \nu_\mu$ (e + ℓ): cut out by requiring E > 0.1 GeV
- $n\nu\tau \to p\tau \to p\ell\nu\ell\nu\tau$ (p + ℓ): cut out by requiring 3 visible objects
- $n\nu_e \rightarrow pe \rightarrow 3e + ...$ by hadronized p (or just by NC): shower can be seen

Maybe DUNE can separate all possible backgrounds

Detection prospects: DM collider

- Non-minimal dark sector (χ_2): cascade process
- Analyzed in current & future huge v detectors:
 Super-K, Hyper-K, DUNE

e-scattering • E_{th} low in Cherenkov light detectors (high σ)

cons

- Sensitive with small flux
- Separation of two signals not easy (good for low p_e)

p-scattering

- E_{th} high in Cherenkov light detectors (low σ)
- Need large flux
- Separation of two signals & 3 visible objects: promising

pros

Detection prospects: DM collider

- Non-minimal dark sector (χ_2): cascade process
- Analyzed in current & future huge v detectors:
 Super-K, Hyper-K, DUNE

e-scattering E_{th} low in Cherenkov light detectors (high σ) Sensitive with small flux Separation of two signals not easy (good for low p_e)

p-scattering

- E_{th} high in Cherenkov light detectors (low σ)
- Need large flux
- Separation of two signals & 3 visible objects: promising

1

CONS

pros

Detection prospects: DM collider

- Non-minimal dark sector (χ_2): cascade process
- Analyzed in current & future huge v detectors:
 Super-K, Hyper-K, DUNE

DUNE

e-scattering

• E_{th} low in Cherenkov light detectors (high σ)

Sensitive with small flux

 Separation of two signals not easy (good for low p_e)

CONS

p-scattering

• E_{th} high in Cherenkov light detectors (low σ)

Need large flux
non-minimal BDM,
fixed target exp.

 Separation of two signals & 3 visible objects: promising cons

pros

Back up

Back up

BDM from the Sun: roughly O(1000) enhancement for $m_{\chi h} \sim 10 \text{ GeV}$

following eq. (3.1) of 1410.2246

Capture rate proportional to m_{2h} -2

Flux =
$$10^{-6} \times \sigma_{DD} \times m_{\chi h}^{-2}$$

$$\Phi \sim 10^{-6} \times \left(\frac{\sigma_{\rm DD}}{10^{-42} \, {\rm cm}^2}\right) \times \left(\frac{100 \, {\rm GeV}}{m_{\chi_h}}\right)^2$$

p-scattering: possible search area

Region of elastic scattering pp: [Eth, 1.8 GeV]

DUNE

Kamiokande

Back up

Singlet Fermionic Dark Matter

Y.G. Kim, K.Y. Lee, **SS**, JHEP 0805, 100 [arXiv:0803.2932]

A renormalizable Higgs portal WIMP model

(induce bunch of phenomenological studies: exotic decay, ...)

Secluded SFDM

Secluded set-up by Kim, Lee, Park, ss, 1601.05089

- Small mixing angle: Higgs measurements at the LHC
 & null results in direct detection
- Pseudoscalar int. in the dark sector: p-wave in t-channel WIMP-SM recoil s-wave in s-channel

Lopez-Honorez, Schwetz, Zupan, 1203.2064 Fedderke, Chen, Kolb, Wang, 1404.2283

$$-\mathcal{L}_{\rm int}^{\rm dark} = g_S \cos \xi \, s \bar{\psi} \psi + g_S \sin \xi \, s \bar{\psi} i \gamma^5 \psi,$$

Secluded SFDM for the γ -ray excess

Our starting point

- DM annihilation (not denying other possibilities)
- Apply the result by Calore et al., 1409.0042, 1411.4647: syst. & stat. error
- Assume a generalized NFW profile allowing the uncertainties in the astrophysical factor \bar{J} with scaling [0.17, 5.3] and $\gamma=1.2$

Calore, Cholis, McCabe, Weniger, 1411.4647

$$\rho(r) = \rho_s \frac{(r/r_s)^{-\gamma}}{(1+r/r_s)^{3-\gamma}}$$

$$\frac{\mathrm{d}N}{\mathrm{d}E} = \frac{\bar{J}}{16\pi m_{\chi}^2} \sum_{f} \langle \sigma v \rangle_f \frac{\mathrm{d}N_{\gamma}^f}{\mathrm{d}E}$$

$$\bar{J} = \frac{1}{\Delta\Omega} \int_{\Delta\Omega} \int_{\mathrm{l.o.s}} \rho^2(r(s, \psi)) \,\mathrm{d}s \,\mathrm{d}\Omega$$

Secluded SFDM for the γ -ray excess

Analysis process

- Unavoidable bounds: Higgs measurements, \bar{p} ratios, γ -rays from dSphs.
- GeV level excess is best-fitted by changing \bar{J} while fixing the relic density as observed (how we avoid the astrophysical bounds)
- Check the pure (dark sector) pseudoscalar case first ($\sin \xi = 1$). If not good, allow the scalar interaction.

Best-fitted for $\psi \bar{\psi} \to b \bar{b}, \, h_i h_j$ as model independent i,j=1,2 searches expected

But some subtleties exist