Using Foam as a Matrix Element Method Look-Up Table

Thomas Sandell

March 7, 2017

University of Michigan

The Matrix Element Method

- Extracts Theoretical Information from Physical Events
- Used to find precise measurements of physical parameters or to search for new phenomena
- This method assigns a probability for each hypothesis, given a sample of events
- Basically, this method combines theory and physical events to accurately determine physical parameters based on complex systems

Issues with Matrix Element

- It is not particularly straightforward, as complicated theoretical scattering information and experimental information must be combined
- This makes the calculations very complex, and very inefficient
- Currently, the bottleneck is the calculation times

Solution: Foam

- Instead of calculating the matrix element for every event, store this on a look-up table of n dimensions, where n is the number of parameters
- Our look-up table consists of an n-dimensional data structure with non-equidistant binning, called foam
- This is basically an n-dimensional space consisting of hyperrectangles, inside each of which an integral is calculated referring to the probability of your hypothesis

2x2 Foam Example

Optimizing Foam: Adding Cells

- The foam integral becomes much more accurate when more cells are added
- Unfortunately, it becomes a lot slower too
- My first project was to parallelize foam so that many more cells could be created in an individual foam

100 Cells

10000 Cells

1000000 Cells

6.4 Million Cells (Biggest Yet)

Optimizing Foam: Transforming Variables

- One of foam's weaknesses is measuring the top of sharply peaked variables
- This is because there may never be a hyperrectangle small enough to measure the very top of a peak
- By taking advantage of carefully calculated variable transformations, we can make our peaks much less steep

100000 Cell Foam Modeling ttbar collision (px1, py1, pz1, pz2)

100000 Cell Foam Modeling ttbar collision (pT, phi, eta1, eta2)

Long Term Issues

- There are over 40 different valid Feynman diagrams for ttbar, with different smooth variable choices
- Solution: Build up separate foams for each class of Feynman Diagrams
- Eventually, we'll also need a lot more cells because we'll have a lot more dimensions

Sample Feynman Diagrams for TTbar

Sample Feynman Diagrams for TTH

