


# Report from ATLAS and CMS on tt+b-jet background to ttH(bb)

Common meeting on  $t\bar{t}$ +b-jet backgrounds to  $t\bar{t}H(bb)$ Marco A. Harrendorf, Maria Moreno Llacer, Stefan Guindon | February 6th, 2017

#### INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP)





## **Outline of meeting**



## High priorities in the ttH(bb) community

- Handling of systematic uncertainties (especially treatment of tt+HF uncertainties).
- Description of tt+HF by event generators with major focus on a comparison of different event generators for the production of an exclusive tt+bb sample.

## Outline of today's meeting

- Summarizing the efforts and approaches towards tt+b background estimation for the ttH(bb) search at ATLAS and CMS (my talk).
- Presenting a proposal/recommendation for treating systematic tt+bb uncertainties in a common way in the future (Stefano's talk).

## **Monte Carlo samples**



#### Common

Nominal sample: Inclusive 5FS POWHEG Box V2 tt sample.

#### ATLAS: Until ICHEP 2016

- Nominal sample: POWHEG Box V2 +Pythia6 and CT10 PDF set.
- Re-weighted to match predictions of 4FS Sherpa+OpenLoops tt+bb sample.

#### ATLAS: New baseline

Nominal sample: POWHEG Box V2 +Pythia8 with hdamp=1.5⋅m(top) and NNPDF3.0 PDF set.

#### **CMS**

Nominal sample: POWHEG Box V2 +Pythia8 and NNPDF3.0 PDF set.

## MC systematics: ATLAS new baseline



## Nominal sample: POWHEG Box V2 + Pythia8

- hdamp=1.5⋅ m(top) and NNPDF3.0 PDF set
- Including event weights to evaluate uncertainties due to scale, PDF, and hdamp choices

## Matrix element generator comparisons

MG5aMC(NLO) + Pythia8 vs. POWHEG Box V2 + Pythia8

## Parton shower and hadronization comparisons

POWHEG Box V2 + Herwig7 vs. POWHEG Box V2 + Pythia8

## Tune variations

A14 eigentunes for Pythia8

# MC systematics: CMS



## Nominal sample: POWHEG Box V2 + Pythia8

- NNPDF3.0 PDF set
- Including event weights to evaluate uncertainties due to scale, PDF. Planned:  $\alpha_S$  and hdamp choices

## Matrix element generator comparisons

MG5aMC(NLO) + Pythia8 vs. POWHEG Box V2 + Pythia8 vs . MG5aMC(LO) + Pythia8

#### Parton shower and hadronization

- Pythia8 with ISR and FSR  $\alpha_S$  variations
- CUETP8M2 tune based on Monash tune for Pythia8

#### Jet definitions



#### Common

anti-kT jet algorithm with R=0.4.

#### **ATLAS**

■ Particle level:  $p_T > 15$  GeV (ensuring  $\approx 100$  %  $t\bar{t}$ + $b\bar{b}$  reweighting for 15 GeV truth jets that can become 25 GeV reco jets).

#### **CMS**

- Particle level: p<sub>T</sub> > 20 GeV
- Reco level semilepton events: p<sub>T</sub> > 30 GeV
- Reco level dilepton events:  $p_T > 30$  GeV for first 2 dilepton jets, others  $p_T > 20$  GeV. (Comparable to CMS reference dilepton  $t\bar{t}$  analysis)

## **B**-jet definition



#### Common

Based on b-hadrons.

#### **ATLAS**

• Only b-hadrons with  $p_T > 5$  GeV using  $\Delta R$ -matching.

## **CMS**

Every existing b-hadron is used and determined by ghost-matching.

# Labelling: tt+b-jets subcategories



#### Common

- Using the following (different defined, see next slides) subcategories:
  - exclusive tt+b.
  - exclusive tt+bb.
  - exclusive tt +B / tt+2b (ATLAS / CMS terminology).
- Note: Subcategories based on number of additional b-jets (not from top decay).

#### **ATLAS**

- Treating uncertainties as fully correlated.
- Also uses  $t\bar{t} + \geq 3b$  category.

#### **CMS**

Treating uncertainties as fully uncorrelated.

Marco A. Harrendorf - ATLAS+CMS tt+b-jet bkg

## Labelling: Further details

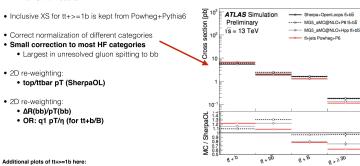


|           | ATLAS                                                                                                                            | CMS                                                                                         |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| tt+b-jets | b-hadron (pT > 5 GeV) not from top or W<br>within DR 0.3 of particle jet (pT >15 GeV)<br>Re-weighted to 4F Sherpa+OL calculation | b-hadron not from top or W ghost<br>match particle jet ( 20 GeV)<br>No re-weighting applied |  |
| tt+cc     | c-hadron not from top/W within DR 0.3 of<br>particle jet (pT >15 GeV)                                                            | c-hadron not from top/W ghost<br>match particle jet ( 20 GeV)                               |  |

- tt+b -> one extra b-hadron within one truth jet per event
- tt+bb -> one extra b-hadron within one truth jet x2 per event
- tt+B -> two extra b-hadrons within one truth jet per event

Provided by Stefan Guindon and Maria Moreno Llacer

# **ATLAS Re-weighting procedure**




## ATLAS: Re-weighting procedure





- Some differences in tt+bb kinematics between generators
- Re-weight Powheg+Pythia6 to Sherpa+OpenLoops\* Re-weighted to 4FS due to lack
  - Powheg+Pythia6: default ttbar inclusive generator of 4FS reco samples for ICHEP results



Apr 13, 2016

Outline

Stefan Guindon

Summary

**University at Albany** 

# **Labelling: ATLAS systematics**



# Systematics are fully correlated across all $t\bar{t} \ge 1b$ categories

- One normalization uncertainty (no prior fully floating nuisance parameter)
- 4FS systematics from Sherpa+OpenLoops (scales, PDF, MPI/FSR).
- 4FS Generator comparison comparison of re-weighting to Sherpa+OpenLoops or MG5aMC + Pythia8.
  - Follows from YR4 and WG discussions regarding 4FS comparisons.
  - Same setup for MC samples as in YR4.
  - Larger impact on measurement than 4FS uncertainties of only Sherpa+OpenLoops.
- 5FS and PS residual systematics (alternative samples are re-weighted to Sherpa+OpenLoops and remaining difference is taken as the systematic uncertainty).

# Labelling: ATLAS systematics in detail



## **Systematics**





· Systematics are correlated for all tt+>=1b categories

| Systematic source                                   | How evaluated                                            | tt categories                                             |
|-----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|
| tt cross-section                                    | ±6%                                                      | All, correlated                                           |
| NLO generator<br>(residual)                         | Powheg-Box + Herwig++ vs. MG5_aMC + Herwig++             | All, uncorrelated                                         |
| Radiation<br>(residual)                             | Variations of $\mu_R$ , $\mu_F$ , and $hdamp$            | All, uncorrelated                                         |
| PS & hadronisation<br>(residual)                    | Powheg-Box + Pythia 6 vs. Powheg-Box + Herwig++          | All, uncorrelated                                         |
| NNLO top & $t\bar{t}$ $p_T$                         | Maximum variation from any NLO prediction                | $t\bar{t} + \geq 1c$ , $t\bar{t} + \text{light, uncorr.}$ |
| tt + bb NLO generator<br>reweighting                | SherpaOL vs. MG5_aMC+ Pythia8                            | $t\bar{t} + \ge 1b$                                       |
| $t\bar{t} + b\bar{b}$ PS & hadronis.<br>reweighting | MG5_aMC + Pythia8 vs. MG5_aMC + Herwig++                 | $t\bar{t} + \ge 1b$                                       |
| tt + bb renorm. scale<br>reweighting                | Up or down a by factor of two                            | $t\bar{t} + \ge 1b$                                       |
| $t\bar{t} + b\bar{b}$ resumm. scale reweighting     | Vary $\mu_{\rm Q}$ from $H_{ m T}/2$ to $\mu_{ m CMMPS}$ | $t\bar{t} + \ge 1b$                                       |
| $t\bar{t} + b\bar{b}$ global scales<br>reweighting  | Set $\mu_Q$ , $\mu_R$ , and $\mu_F$ to $\mu_{CMMPS}$     | $t\bar{t} + \ge 1b$                                       |
| $t\bar{t} + b\bar{b}$ shower recoil reweighting     | Alternative model scheme                                 | $t\bar{t} + \ge 1b$                                       |
| tt + bb PDF<br>reweighting                          | CT10 vs. MSTW or NNPDF                                   | tī +≥1b                                                   |
| $t\bar{t} + b\bar{b}$ MPI                           | Up or down by 50%                                        | $t\bar{t} + \ge 1b$                                       |
| $t\bar{t} + b\bar{b}$ FSR                           | Radiation variation samples                              | $t\bar{t} + \ge 1b$                                       |
| $t\bar{t} + c\bar{c}$ ME calculation                | MG5_aMC + Herwig++ inclusive vs. ME prediction           | $t\bar{t} + \geq 1c$                                      |

#### • tt+>=1b:

- Residual inclusive 5F ttbar+jets uncertainties
  - · Remaining differences after re-weighting to SherpaOL
  - · Uncorrelated with tt+light and tt+>=1c
  - · Will change with tuning of generators
- 4F vs 4F Generator comparison
  - · Re-weighting done to MG5 and not SherpaOL
- 4F Systematics from Sherpa+OL

Apr 13, 2016 University at Albany Stefan Guindon Questions to discuss Backup Summary 0000000000

Outline

# **Labelling: CMS systematics**



## Systematics are fully uncorrelated across all $t\bar{t} \ge 1b$ categories

- General inclusive tt cross section normalization uncertainty
- General PDF uncertainty for gg initiated processes except ttH (e.g. tt, tt Z).
- Three independent and uncorrelated uncertainties per tt̄+b-jets category:
  - Cross section normalization uncertainty (so far 50 %) for the tt+b-jets subcategories in addition to inclusive tt cross section normalization uncertainty.
  - Renormalization and factorization scale shape uncertainty.
  - Parton shower ISR / FSR shape uncertainty.
- Note: Uncertainties can be either normalization / rate uncertainties or shape uncertainties.

## **Questions to discuss**



## MC event samples

- Sizable differences for the NLO 4FS tt+bb predictions from various MC event generators are observed. How can we understand this difference better? In the meantime, which MC event generator should / could we use for the baseline MC samples?
- 4FS systematics from single event generators are seemingly small (in terms of using re-weighting) compared to 4FS vs. 4FS (MG5aMC vs. Sherpa+OpenLoops) generator comparison - does this make sense?
- Common use of MC event generator and PDF sets: Can we define a common PDF set and MC event generator in ATLAS and CMS which could be used by default for the ttH(bb) analysis?
- Should we and how could we integrate dedicated 4FS tt+bb predictions into the used inclusive 5FS tt samples?

## **Questions to discuss**



## **Systematics**

- How do we merge systematics from 5FS and / or 4FS estimations?
- ATLAS was using fully correlated uncertainties, while CMS was using fully uncorrelated uncertainties for the tt+b-jets subcategories. How (much) should we correlate the subcategories?

## Object definition

- Choice of  $p_T$  threshold used for additional true b-jets to define  $t\bar{t} + \ge 1$ b? (ATLAS:  $p_T > 15$  GeV / 25 GeV, CMS:  $p_T > 20$  GeV / 30 GeV)
- ATLAS currently labels hadronic b-jets wit  $p_T$  ≪ matched particle jet  $p_T$  as true b-jets. Better procedure?

# **Backup – Reweighting**



# ATLAS Re-weighting procedure for tt sample



- ① Applying a kinematic reweighting separately in each of the  $t\bar{t} + \ge 1b$  sub-categories, such that the relative normalisation of the sub-categories and the kinematic distributions match the Sherpa+OpenLoops prediction.
- ② In each sub-category, two-dimensional reweighting based on the  $p_T$  of the top quark and the  $p_T$  of the  $t\bar{t}$ -system.
- ⓐ In the  $t\bar{t}$  +≥3b and  $t\bar{t}$ +b $\bar{b}$  sub-categories, two-dimensional reweighting of the  $\Delta R$  between the b-jets and the  $p_T$  of the system of b-jets.
- **4** In the  $t\bar{t}$  + B and  $t\bar{t}$ +b sub-categories, the B or b-jet  $p_T$  and  $\eta$  are used.
- ⑤ Topologies which are not included in the NLO calculation but are labeled as tt̄ + ≥1b are not reweighted. These include tt̄ events with additional b-jets from multi-parton interactions and b-jets from final-state radiation.

# Backup - Labelling



# ATLAS tī+b-jets categorization



- **1** Take match between b-hadrons not from top with  $p_T > 5$  GeV and particle jets (truth jets) with  $\Delta R < 0.4$ .
- ② If this particle jet has  $p_T >$  15 GeV and  $|\eta| <$  2.5, then the event has an additional b.
- If there are two such particle jets, matched to two b-hadrons not from top, then the event is labeled "bb".
- If two b-hadrons not from top are matched to one particle jet, it is labelled "B".
- In the fit, all b categories are combined and all c categories are combined. No split between tt+b and tt+bb are explicitly formalized by a NP in the profile likelihood, however, the PS systematics, comparisons of generators and NLO systematics allow for the normalization of tt+b and tt+bb to vary.

# CMS tt+b-jets categorization



CMS is making use of the GenHFHadronMatcher together with ghost hadron matching:

- Define kinematic criteria for additional jets:  $p_T > 20$  GeV and  $|\eta| < 2.4$ .
- Identify b jets containing b hadrons from t→ Wb (regardless of their kinematics)
- Oreate lists of remaining jets that contain b or c hadrons not from t  $\rightarrow$  Wb, but originate from before or after top decay.
- **a** Skip b and c hadrons coming from the W decay. of the t $\rightarrow$  Wb.
- Skip c hadrons that stem from the decay of a b hadron.
- Count number of corresponding hadrons in each jet (Jets from overlapping hadrons can have higher b-tag output).
- Jets are divided into additional (from hadrons before top decay) and pseudoadditional (from hadrons after top decay) jets.
- Event is categorized based on number of additional/pseudoadditional b/c jets and number of hadrons in each of them.

20/15

# **Systematics**



Backup

# **ATLAS systematics**







## Impact on Analysis I

| Uncertainty source                             | Δμ    |       |
|------------------------------------------------|-------|-------|
| $t\bar{t} + \geq 1b$ modelling                 | +0.53 | -0.53 |
| Jet flavour tagging                            | +0.26 | -0.26 |
| $t\bar{t}H$ modelling                          | +0.32 | -0.20 |
| Background model statistics                    | +0.25 | -0.25 |
| $t\bar{t}+ \geq 1c$ modelling                  | +0.24 | -0.23 |
| Jet energy scale and resolution                | +0.19 | -0.19 |
| $t\bar{t}$ +light modelling                    | +0.19 | -0.18 |
| Other background modelling                     | +0.18 | -0.18 |
| Jet-vertex association, pileup modelling       | +0.12 | -0.12 |
| Luminosity                                     | +0.12 | -0.12 |
| $t\bar{t}Z$ modelling                          | +0.06 | -0.06 |
| Light lepton $(e, \mu)$ ID, isolation, trigger | +0.05 | -0.05 |
| Total systematic uncertainty                   | +0.90 | -0.75 |
| $t\bar{t}+ \geq 1b$ normalisation              | +0.34 | -0.34 |
| $t\bar{t}+ \geq 1c$ normalisation              | +0.14 | -0.14 |
| Statistical uncertainty                        | +0.49 | -0.49 |
| Total uncertainty                              | +1.02 | -0.89 |
|                                                |       |       |

. tt+>=1b modelling dominant systematic

· Normalization uncertainty still large, but not leading in Run-2

Apr 13, 2016 Stefan Guindon University at Albany Questions to discuss Backup Summary 00000000000

Outline

## **Event reconstruction**



#### **Full event reconstruction**



#### Common

 Removing the b-jets belonging to top decays based on origin of B-hadron.

#### ATLAS: Full event reconstruction

Applying BDT to reconstruct full event simultaneously.

## CMS: Top reconstruction

- In most categories:  $\chi^2$ -based reconstruction.
- Applying matrix element method in almost all categories as a full event likelihood to identify top candidates.

# **Backup – Generator settings**



## **ATLAS Generator settings**









| ME gen.<br>PS/UE gen. | Powheg-Box<br>Pythia 6.428          | Powheg-Box<br>Herwig++2.7.1         | MG5_aMC<br>Herwig++2.7.1                                  | Powheg-Box<br>Pythia 6.428                            | Powheg-Box<br>Pythia 6.428                  |
|-----------------------|-------------------------------------|-------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|---------------------------------------------|
| Ren. scale            | $\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$ | $\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$ | $\sqrt{m_t^2 + \frac{1}{2}(p_{T,t}^2 + p_{T,\bar{t}}^2)}$ | $\frac{1}{2} \cdot \sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$ | $2 \cdot \sqrt{m_t^2 + p_{\mathrm{T},t}^2}$ |
| Fact. scale           | $\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$ | $\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$ | $\sqrt{m_t^2 + \frac{1}{2}(p_{T,t}^2 + p_{T,\bar{t}}^2)}$ | $\frac{1}{2} \cdot \sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$ | $2 \cdot \sqrt{m_t^2 + p_{\mathrm{T},t}^2}$ |
| hdamp                 | $m_t$                               | $m_t$                               | _                                                         | $2 \cdot m_t$                                         | $m_t$                                       |
| ME PDF                | CT10                                | CT10                                | CT10                                                      | CT10                                                  | CT10                                        |
| PS/UE PDF             | CTEQ6L1                             | CTEQ6L1                             | CTEQ6L1                                                   | CTEQ6L1                                               | CTEQ6L1                                     |
| Tune                  | P2012                               | UE-EE5                              | UE-EE5                                                    | P2012 radHi                                           | P2012 radLo                                 |

Table 3: Summary of the settings used for the simulation of the inclusive  $i\hat{i}$  samples. For the renormalisation and factorisation scales,  $p_{T:i}(p_{T:i})$  indicates the transverse momentum of the top (anti-top) quark in the  $i\hat{i}$  centre-of-mass reference frame.

| ME gen.       | MG5_aMC                        | MG5_aMC                   | SherpaOL           |
|---------------|--------------------------------|---------------------------|--------------------|
| PS/UE gen.    | Herwig++ 2.7.1                 | Pythia 8.210              | Sherpa             |
| Renorm. scale | μ <sub>CMMPS</sub>             | μ <sub>CMMPS</sub>        | μ <sub>CMMPS</sub> |
| Fact. scale   | $H_{\rm T}/2$                  | $H_{\rm T}/2$             | $H_{\rm T}/2$      |
| Resumm. scale | $f_{\mathrm{Q}}\sqrt{\hat{s}}$ | $f_{\rm Q}\sqrt{\hat{s}}$ | $H_{\rm T}/2$      |
| ME PDF        | NNPDF3.0 4F                    | NNPDF3.0 4F               | CT10 4F            |
| PS/UE PDF     | CTEQ6L1                        | NNPDF2.3                  |                    |
| Tune          | UE-EE-5                        | A14                       | Author's tune      |

Table 4: Summary of the settings used for the simulation of  $i\bar{i} + b\bar{b}$  4F NLO samples. For the resummation scale,  $\sqrt{s}$  is the Born-level partonic centre-of-mass energy, while  $f_Q$  is a random pre-factor allowed to vary in the range [0.1, 0.25],

Apr 13, 2016

Stefan Guindon

**University at Albany** 

Outline

Summary

Questions to discuss

Backup