Theory predictions for $t\bar{t}+b$ -jet background to $t\bar{t}H(b\bar{b})$

Stefano Pozzorini

in collaboration with S. Guindon, M. Harrendorf, M. Moreno-Llacer, C. Neu, L. Reina

HXSWG- $t\bar{t}H$ meeting, 6 February 2017

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

Outline

- 1 NLO+PS $t \bar{t} b \bar{b}$ simulations
- 2 Combination of $t \bar t + X$ and $t \bar t b \bar b$ simulations
- 4 NLO+PS $t\bar{t}b\bar{b}$ tool comparisons

Irreducible $t\bar{t}b\bar{b}$ QCD background at NLO+PS

Nontrivial features of $pp o t \bar{t} b \bar{b}$

- 6 external coloured partons
- 34 LO diagrams, multiple scales from 5 to 500 GeV
- ullet dominated by topologies with FS g o bar b splittings
- \Rightarrow collinear regions and m_b important (resummation of IS g o bar b splittings not)
- NLO+PS $t\bar{t}b\bar{b}$ 5F scheme ($m_b=0$) with POWHEL [Garzelli et al '13/'14] $t\bar{t}b\bar{b}$ NLO MEs cannot describe collinear $q\to b\bar{b}$ splittings
- **NLO merging** $t\bar{t}+0,1,2$ **jets 5F** with Sherpa+OpenLoops or MG5aMC@NLO \bullet challenging for $t\bar{t}+$ HF and still based on $m_b=0$ MEs + shower in collinear regions
- NLO+PS $t\bar{t}b\bar{b}$ 4F scheme ($m_b>0$) with SHERPA+OPENLOOPS [Cascioli et al '13] or MG5AMC@NLO
 - $t\bar{t}b\bar{b}$ NLO MEs cover full b-quark phase space \Rightarrow recommended for $t\bar{t}H(b\bar{b})$
 - \Rightarrow NLO accuracy for any inclusive $tar{t}+$ b-jet observable with ≥ 1 b-jets!

S–MC@NLO $t ar{t} b ar{b}$ at 8 TeV in 4F scheme [Cascioli et al '13]

Convergence of 4F scheme: no large $log(m_b)$ in ttb region!

	ttb	ttbb	$ttbb \left(m_{bb} > 100 \right)$
$\sigma_{ m LO}[{ m fb}]$	$2644^{+71\%}_{-38\%}{}^{+14\%}_{-11\%}$	$463.3^{+66\%}_{-36\%}{}^{+15\%}_{-12\%}$	$123.4^{+63\%}_{-35\%}{}^{+17\%}_{-13\%}$
$\sigma_{ m NLO}[{ m fb}]$	$3296^{+34\%}_{-25\%}{}^{+5.6\%}_{-4.2\%}$	$560^{+29\%}_{-24\%}{}^{+5.4\%}_{-4.8\%}$	$141.8^{+26\%}_{-22\%}{}^{+6.5\%}_{-4.6\%}$
$\sigma_{ m NLO}/\sigma_{ m LO}$	1.25	1.21	1.15
$\sigma_{ m MC@NLO}[{ m fb}]$	$3313^{+32\%}_{-25\%}{}^{+3.9\%}_{-2.9\%}$	$600^{+24\%}_{-22\%}{}^{+2.0\%}_{-2.1\%}$	$181^{+20\%}_{-20\%}{}^{+8.1\%}_{-6.0\%}$
$\sigma_{ m MC@NLO}/\sigma_{ m NLO}$	1.01	1.07	1.28

MC@NLO enhancement in Higgs region from double g o b ar b splittings

One g o b ar b splitting from PS

⇒ TH uncertainties related to NLOPS matching and shower crucial!

Outline

- 1 NLO+PS $t \bar{t} b \bar{b}$ simulations
- 2 Combination of $t \bar t + X$ and $t \bar t b \bar b$ simulations
- $3 t \bar{t} b \bar{b}$ uncertainties
- 4 NLO+PS $t\bar{t}b\bar{b}$ tool comparisons

Approach proposed in YR4

NLOPS 4F $t\bar{t}b\bar{b}$ sample

- can be applied in its full phase space (no generation cuts)
- \Rightarrow inclusive description of $t\bar{t}+ \geq 1b$ -quarks
 - ullet includes also contributions corresponding to gb o tar tb in the 5F scheme

Inclusive $t\bar{t}+X$ sample

- needs to be restricted to $t\bar{t} + 0 b$ -quarks to avoid double counting
- \Rightarrow veto events containing b-quarks not arising from showered top decays or MPI or UE

Possible implementations

- \bullet $t\bar{t}+X$ and $t\bar{t}b\bar{b}$ samples independent samples
- ullet reweighting of tar t+X sample through tar tbar b in the $tar t+\ge 1b$ -quarks region

Refinement for region of small $p_{T,b}$

Caveat

- $t\bar{t}b\bar{b}$ sample yields (small) contribution to $t\bar{t}+0$ b-jet categories of EXP analysis
- ullet $tar t+0\,b$ -jet categories (dominated by $tar t+{
 m gluons/light}$ -quarks) can bias tar tbar b fit
- \Rightarrow preferable to restrict $t \bar{t} b \bar{b}$ to $t \bar{t} + b$ -jet categories

Proposal: smooth matching of $t\bar{t}+X$ and $t\bar{t}b\bar{b}$ samples

ullet using smearing function of leading b-jet p_T , such as

$$\xi(p_{T,b}) = \begin{cases} 0 & \equiv \mathsf{pure}\,\, t\bar{t} + 0b & \text{for} \quad p_{T,b} < p_{T,\min} \\ \frac{1}{2} \left[1 - \cos\left(\pi \frac{p_{T,b} - p_{T,\min}}{p_{T,\max} - p_{T,\min}}\right) \right] & \text{for} \quad p_{T,\min} < p_{T,b} < p_{T,\max} \\ 1 & \equiv \mathsf{pure}\,\, t\bar{t} + \geq 1b & \text{for} \quad p_{T,b} > p_{T,\max} \end{cases}$$

- with transition region in the vicinity of experimental *b*-jet threshold,
 - e.g. $[p_{T,\min}, p_{T,\max}] = [15, 25] \text{ GeV}$
- same matching procedure should be used in ATLAS and CMS for a transparent comparison and combination of EXP results

Outline

1 NLO+PS $t ar{t} b ar{b}$ simulations

- $oxed{2}$ Combination of $tar{t}+X$ and $tar{t}bar{b}$ simulations
- 4 NLO+PS $t\bar{t}b\bar{b}$ tool comparisons

Scale choices (YR4) and uncertainties (no proposal yet)

Factorisation (μ_Q) and resummation (μ_Q) scales

$$E_{T_i} = \sqrt{m_i^2 + p_{T,i}^2}$$

$$\mu_F = \mu_Q = \frac{H_T}{2} = \frac{1}{2} \sum_{i=t,\bar{t},b,\bar{b}} E_{T,i}$$

 $\mu_Q \equiv$ shower starting scale is a free paramater in MC@NLO (not in Powheg)

CKKW-like (softer) renormalisation scale

$$\mu_R = \mu_{\text{CKKW}} = \prod_{i=t,\bar{t},b,\bar{b}} E_{T,i}^{1/4}$$

Scale variations (leading uncertainty) ~20-30%

- factor-2 variations of μ_R and $\mu_F \Leftrightarrow$ normalisation
- "kinematic" variations of $\mu_R, \mu_F, \mu_Q \Leftrightarrow \text{shape}$
- ullet variations of μ_Q in MC@NLO and h_{damp} in Powheg \Leftrightarrow NLOPS matching

Other variations

- PDF variations (only few percent)
- shower variations: tune variations, shower recoil scheme, . . .

Correlation of TH uncertainties between categories

Categories

- $t\bar{t}h(b\bar{b})$ analyses based on simultaneous fit of MC to data in various categories with different # of light- and b-jets
- correlations crucial to constrain background in signal region (with multiple b-jets)

Between $t\bar{t}$ +light-jet and $t\bar{t}$ + b-jet categories

uncertainties should be uncorrelated

Between sub-categories (e.g. ttb, ttbb, ttB)

uncertainties should be correlated

Motivation: independent shower, matching and ME variations account for different types of uncertainties (e.g. related to collinear $g \to b\bar{b}$ splittings or hard b-production) \Rightarrow no need of separate categories with uncorrelated uncertainties

Outline

1 NLO+PS $t ar{t} b ar{b}$ simulations

- ② Combination of tar t + X and tar t bar b simulations
- $\Im t \bar{t} b \bar{b}$ uncertainties
- 4 NLO+PS $t \bar{t} b \bar{b}$ tool comparisons

Tuned comparison of NLO+PS $t\bar{t}b\bar{b}$ simulations at 13 TeV

Different NLO+PS methods, showers, and m_b treatments

Tool	Matching	Shower	$m_b [{ m GeV}]$	gencuts
SHERPA2.1+OPENLOOPS	SMC@NLO	Sherpa 2.1	4.75 (4F)	no
$MG5_AMC@NLO$	MC@NLO	Pythia 8.2	4.75 (4F)	no
POWHEL	Powheg	Pythia 8.2	0 (5F)	$p_{T,b} > 4.75 \text{GeV}$
				$\frac{m_{bb}}{2} > 4.75 \mathrm{GeV}$

Detailed setup

- HXSWG's Yellow Report 4 [arXiv:1610.07922]
- https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ProposalTtbb

Inclusive $t\bar{t} + b$ -jet multiplicity distribution

- S-MC@NLO (Sherpa+OpenLoops) with $\mu_{R,F}$ variations
- MG5_aMC@NLO+PY8 w.o. variations
- Powhel+PY8 w.o. variations

NLO vs NLO+PS

• decent agreement in NLO accurate bins with ≥ 1 and ≥ 2 b-jets

S-MC@NLO vs PowHel+PY8

 good overall agreement in spite of differences in matching method, parton shower, N_f -scheme and ad-hoc cuts in Powhel

S-MC@NLO vs MG5aMC@NLO

• good agreement only for > 1 b-jets despite similar matching method and same N_f

$t\bar{t}b\bar{b}$ distributions with $\geq 2b$ -jets

S-MC@NLO vs PowHel+PY8

- well consistent also in observables that receive significant shower corrections
- ullet confirmation of "double-splitting effects" (see e.g. m_{bb})

S-MC@NLO vs MG5aMC@NLO

- ullet 40% enhancement of $tar{t}+2{\sf b}$ XS & sizable differences in NLO radiation pattern
- related to strong sensitivity to resummation scale (shower starting scale) in MG5 ...

Dependence on resummation scale μ_Q

Nominal MG5_aMC and Sherpa+OpenLoops predictions in YR4

• MG5_aMC supports* only $\mu_Q = f(\xi)\sqrt{\hat{s}} \Rightarrow$ smearing function restricted to $0.1 < f(\xi) < 0.25$ to mimic recommended $\mu_Q = H_T/2$ implemented in Sherpa

New: μ_Q variations enhance the discrepancy

- $\mu_Q = \sqrt{\hat{s}}/2$ in Sherpa to mimic MG5_aMC default choice $0.1 < f(\xi) < 1$
- ullet strong μ_Q -sensitivity of MG5_aMC \Rightarrow much more pronounced deviations

^{*}New: latest MG5aMC@NLO version implements $\mu_Q=H_T/2$ as default resummation scale

Dependence on resummation scale μ_Q

Interpretation of large Sherpa+OpenLoops vs MG5aMC@NLO differences?

- can we exclude bugs or misusage of tools?
- related to single μ_Q scale in MC@NLO vs multi-scale process $(M_{tt} \sim 100 M_b)$?
- small μ_Q sensitivity and NLOPS/NLO difference in Sherpa+OpenLoops suggests MG5aMC@NO-specific issue (?)
- SHERPA+OPENLOOPS $t\bar{t}b\bar{b}$ 4F supported by POWHEL $t\bar{t}b\bar{b}$ 5F, but should be confirmed by POWHEG $t\bar{t}b\bar{b}$ 4F simulation

Conclusions

NLO+PS $t\bar{t}b\bar{b}$ 4F simulations

- ullet recommended for tar t+b-jet backgrounds
- \bullet technically automated but physically very tricky (many coloured partons and scales, $g\to b\bar{b}$ splittings)

Matching $t\bar{t}+X$ with $t\bar{t}b\bar{b}$ 4F samples

- ullet veto events with additional b-quarks in tar t+X sample
- ullet smooth implementation as a function of leading-jet p_T

$t ar{t} b ar{b}$ uncertainties

- ullet dominated by μ_R, μ_F, μ_Q scale dependence
- detailed recommendations for shape uncertainties still needed

Discrepancy between Sherpa+OpenLoops and MG5aMC@NLO

- ullet related to μ_Q dependence of MG5AMC@NLO
- calls for thorough investigation/validation

Backup slides

Scale variations for shape (not for normalisation) uncertainties

Consider (aggressive but not fully unreasonable) kinematic distortions of μ_R , μ_F , μ_Q using various combinations of the variables

$$\mu_{\rm CMMPS} = \prod_{i=t,\bar{t},\bar{b}\bar{b}} E_{T,i}^{1/4}, \qquad m_{\rm b\bar{b}}, \qquad H_{T,{\rm b}({\rm t})} = E_{T,{\rm b}({\rm t})} + E_{T,\bar{\rm b}(\bar{\rm t})}, \qquad H_{T} = H_{T,{\rm t}} + H_{T,{\rm b}}$$

Scale	default	glo-HT	glo-Mt	glo-soft	R-Mbb	R-HTb	R-HTt	Q-CMMPS	Q-Mt
$\mu_{\rm R}$	μ_{CMMPS}	$H_T/2$	$m_{ m t}$	μ_{CMMPS}	$(m_{\mathrm{t}}m_{\mathrm{b}ar{\mathrm{b}}})^{1/2}$	$\left(m_{\mathrm{t}}H_{T,\mathrm{b}}/2\right)^{1/2}$	$\left(m_{\mathrm{t}}H_{T,\mathrm{t}}/2\right)^{1/2}$	μ_{CMMPS}	$\mu_{\rm CMMPS}$
μ_{F}	$H_{T,\mathrm{t}}/2$	$H_T/2$	$m_{ m t}$	μ_{CMMPS}	$H_{T,t}/2$	$H_{T,t}/2$	$H_{T,t}/2$	$H_{T,t}/2$	$H_{T,t}/2$
μ_Q	$H_{T,\mathrm{t}}/2$	$H_T/2$	$m_{ m t}$	μ_{CMMPS}	$H_{T,t}/2$	$H_{T,t}/2$	$H_{T,t}/2$	μ_{CMMPS}	$m_{ m t}$
Cuts	$\Delta \sigma / \sigma$	$\Delta \sigma/\sigma$	$\Delta \sigma/\sigma$	$\Delta \sigma/\sigma$	$\Delta \sigma / \sigma$	$\Delta \sigma/\sigma$	$\Delta \sigma/\sigma$	$\Delta \sigma / \sigma$	$\Delta \sigma / \sigma$
ttb	0%	-41%	-27%	+4.7%	+2.3%	1.1%	-32%	-3.5%	-0.3%
ttbb	0%	-33%	-17%	-0.7%	+0.2%	3.4%	-22%	-6.4%	-1.1%
$ttbb_{100}$	0%	-29%	-13%	-9.2%	-5.6%	+2.5%	-17%	-14%	-2.9%

glo single global scale: hard, fixed and softer

R renormalisation scale (dominant!): modify or avoid b-jet dependence

Q resummation-scale (PS uncertainties): softer and fixed

Additional m_b and PDF variations with potential impact on shape (and normalisation)

	$M_b = 5.0$	$M_b = 4.5$	CTEQ 4F	$MSTW_{37}$	$MSTW_{38}$
Cuts	$\Delta\sigma/\sigma$	$\Delta\sigma/\sigma$	$\Delta\sigma/\sigma$	$\Delta\sigma/\sigma$	$\Delta\sigma/\sigma$
ttb	-3.5%	+4.4%	-10%	-0.1%	+2.6%
ttbb	-0.7%	+2.7%	-9.3%	+0.2%	+4.2%
$ttbb_{100}$	-0.1%	+4.4%	-7.8%	-0.7%	+6.9%

- conservative b-mass variations $m_{\rm b} = 4.75 \pm 0.25 \,{\rm GeV}$ (impact on collinear regions)
- compare central MSTW to central CT10 PDF and MSTW variations with large gluon-shape distortion (MSTW eigenvector 19)

Shape variations of differential observables

The following plots show a representative selection of shape uncertainties

- normalisation uncertainties removed by normalising all distributions to one
- columns represent (1) R-type (2) glo-type (3) Q-type (4) m_b+PDFs variations

Shape uncertainty of top-quark and b-jet rapidities

 \Rightarrow percent-level variations for $|\eta| < 2.5$; η_b very stable

Shape uncertainty of top- p_T

 $\Rightarrow \sim 10\%$ variations (20% in the tails) driven by top-dependence of $\mu_{\rm R}$

Shape uncertainty of b-jet p_T

 $\Rightarrow \sim 10\text{-}20\%$ variations (40% in the tails) driven by b-dependence of $\mu_{\rm R}$

Shape uncertainty of b-jet correlations

 $\Rightarrow \sim 10\text{-}20\%$ variations driven by b-dependence of $\mu_{\rm R}$ (at small $m_{\rm bb}$ and ΔR) and (agressive) reduction of $\mu_{\rm Q}$ in the tail

Shape uncertainty of 1^{st} light-jet p_T

 \Rightarrow up to $\sim 30\%$ variations at intermediate $p_{\rm T}$ values. Indicates that the considered variations (dominated by choice of soft resummation scale) are (probably too) conservative