
https://root.cern

ROOT
Data Analysis Framework

Even Easier Analysis with TDF

Danilo Piparo for the ROOT Team

https://root.cern

What was Achieved

TDataFrame implements a powerful interaction with
columnar data
▶ Declarative, read, write, transformations, actions
▶ Parallelism

We have done a lot: can we get even nearer to analysis
needs?

2

The Problem to Solve, in Terms of TTree::Draw

Draw("Muon_pt", "Muon_eta> 1")
Draw("Muon_pt", "Muon_eta[0] > 1")
Draw("Muon_pt[0]", "Muon_eta[0] > 1")
Draw("Muon_pt[1]", "Muon_eta[0] > 1")
Draw("Muon_pt[0]", "Sum$(Muon_pt*(Muon_eta > 1)) > 30")
Draw("Muon_pt", "Sum$(Muon_pt*(Muon_eta > 1)) > 30")
Draw("hg[2][][36]:timesamp[]+(dacinj/4096):dacinj")

3

People do this, we
need to help them

Some High Level Guidelines

We need easy paths for:
▶ Implicit (nested) for loops
▶ Operations between same size collections resulting in a

collection
▶ Operations on collections resulting in a collection or a

number
● E.g. calling a method element by element and storing results, Sum

Challenging but opportunity for more optimisations and data
parallelism

4

Example Opportunity

Sum$(Muon_pt*(Muon_eta > 1))
This is a cut + a sum over elements in a collection
▶ Parallelise multiplications
▶ Parallelise on the accumulation

Autovectorisation, veccore… Details.

5

Example Opportunity

Sum$(Muon_pt*(Muon_eta > 1))
This is a cut + a sum over elements in a collection
▶ Parallelise multiplications
▶ Parallelise on the accumulation

Autovectorisation, veccore… Details.

6

Proposals for
Concrete

Improvements

Operations on Colls Returning A Coll

Problem: Multiply element by element two collections,
return the collection of products
Proposal: Mult<T, V=T> (const T&, const V&)
▶ This holds for other operations: Add, Divide …
▶ It works in compiled code (all types must be specified)
▶ Shows its full power in Jitted code

8

Operations on Colls Returning A Coll

auto f=[](const T1& col1, const T2& col2, const T3& col3) {..};
tdf.Define("results", f, {"col1", "col2", "col3"});

Or

tdf.Define("results", "Add(col1, Mult(col2, col3))");

9

The same technique works for collection to scalar
functions (e.g. Sum)

Calling Methods of Objects in Containers

Problem: column holding vector<T>. Want a column with
vector<R> where R is the type of the result of T::MyMethod()
Proposal:
vector<R> ApplyToVec<R, T>(R(T::*m()))
This returns a lambda: [](const vector<T>& v) {...};
Usage:
tdf.Define("results", ApplyToVec(&T::MyMethod), {"myTs"})

10

Embed Value in Histograms w/o Define

Problem: Fill a histogram with a sophisticated value created
only for that and not used anywhere else.
Proposal:
Histo1D(model, myExpr, {”col1”, ”col2”})
where model could {“name”, “title”, 64, -4, 4}
Advantages:
▶ Smaller runtime, more concise syntax
▶ Interplay with previous solutions

11

Open Questions

Draw("hg[2][][36]:timesamp[]+(dacinj/4096):dacinj")

12

