Addendum to the IS608 Proposal

Shape-coexistence and shapeevolution studies for bismuth isotopes by in-source laser spectroscopy

A. E. Barzakh

on behalf of Leuven-Gatchina-ISOLDE-Mainz-Manchester-York and Windmill-ISOLTRAP-RILIS collaboration

Shape coexistence study in the Pb region

Windmill-RILIS-ISOLTRAP Collaboration

ISOLDE: in-source spectroscopy

B. A. Marsh et al., 20013 EMIS conference, NIM B317, p.550 (2013)

WM: A.N. Andreyev et al, Phys. Rev. Lett 105, 252502 (2010)

MR-ToF MS: R. N. Wolf et al, NIM, A686, 82 (2012)

IS608, 83Bi isotopes: radii

In contrast to previous conclusions on sphericity of the 9/2⁻ g.s for the light Bi isotopes, based on decay and in-beam studies, a gradual onset of deformation in the 9/2⁻ gs of the lightest isotopes was deduced, up to $<\beta^2>^{1/2}\sim0.18$ in ¹⁸⁷Bi

Hg and Bi radii

In Bi, shape staggering occurs at the same N as in Hg (N = 105), with the same amplitude and the same radii (deformation) difference between ground and $vi_{13/2}$ based isomeric states.

Bi quadrupole moments

We propose to measure Q(188,187,193,195Bi)

quadrupole moments are needed to support this interpretation.

We also intend to decrease errors for Q in ^{193, 195}Bi measured previously at IRIS(Gatchina).

We did not succeed in measuring the quadrupole moments for ^{187, 188m1, 188m2}Bi nuclei due to power broadening. With a reduced laser power to avoid saturation, the duration of a laser scan should be increased by a factor of two.

Bi: intruders with $I^{\pi} = 1/2^{+}$

The $\mu(1/2^+)$ for Bi intruder isomers starts to deviate from the "spherical" TI trend at N<112.

A measurement of $\mu(^{189}Bi^{m})$ would be crucial in supporting/rejecting this interpretation.

Positive parity states

• 'Oblate' intruders $I^{\pi}=1/2^{+}$

,+ 'Prolate' intruders I^π=1/2+

two closely-spaced (oblate-prolate) 1/2+ states are predicted _

We propose to measure $\mu(^{189}Bi^{m})$

Bi: intruders with $I^{\pi} = 1/2^{+}$

We propose to measure $\delta < r^2 > for^{189}Bi^m$, $^{203}Bi^m$

Bi: ground states μ (I $^{\pi}$ = 9/2 $^{-}$)

deviation from systematics: octupole degree of freedom influence?

odd-even staggering

Octupole deformation correlates with the inverse radii staggering

staggering parameter:
$$\gamma(N) = \frac{2 \cdot \delta \langle r_{N, N-1}^2 \rangle}{\delta \langle r_{N+1, N-1}^2 \rangle}$$
 N — odd

 $\gamma = 1$ — no staggering

 γ < 1 — normal staggering

 $\gamma > 1$ — inverse staggering

Bi: odd-even staggering

staggering parameter:
$$\gamma(N) = \frac{2 \cdot \delta \langle r_{N, N-1}^2 \rangle}{\delta \langle r_{N+1, N-1}^2 \rangle}$$
 $\gamma = 1$ —no staggering $\gamma < 1$ —normal staggering $\gamma > 1$ —inverse staggering

 $\gamma > 1$ — inverse staggering

We propose to measure $\delta < r^2 > (^{219}Bi) \rightarrow \gamma_{Ri}(135)$

and to decrease error for $\gamma_{Bi}(133)$

Bi: high-spin isomers

²¹²Bi^{m1} (πh_{9/2}, vg_{9/2})_{8, 9} 239(30) keV, ²¹²Bi^{m2} [πh_{9/2}, ((vg_{9/2})², vi_{11/2})]₁₈ 1478(30) keV; L. Chen et al., PRL **110**, 122502 (2013) (Schottky Mass Spectrometry, GSI); unobserved IT branch of 75% is implied

²¹³Bi^m [πh_{9/2}, (vg_{9/2}, vi_{11/2})]_{25/2} 1353(21) keV; L. Chen et al., Nucl. Phys. A **882** (2012) 71 (Schottky Mass Spectrometry, GSI); $T_{1/2}$ >168 s; intensive IT branch

We propose to measure δ<r²> (shell effect), μ (configuration) and Q for ²¹²Bi^{m1}, ²¹²Bi^{m2}, ²¹³Bi^m, ²¹⁴Bi^m, ²¹⁵Bi^m (with additional spectroscopic information: T_{1/2}, IT decay etc)

According to the Hartree-Fock calculations the value of shell effect in radii is critically dependent on the occupancy of the neutron vi_{11/2} shell which is markedly changed for these high-spin isomers.

P. M. Goddard, P. D. Stevenson, and A. Rios. PRL, **110**, 032503, 2013

Total beam request

A	I	T _{1/2} , s	Yield, 1/μC	Method of measurement	time, shifts
219	(9/2)	22	>3×10 ¹	IDS	1.5
217	(9/2)	98.5	>3×10 ²	IDS	0.5
215m	(29/2– 25/2)	36.9	>1×10 ³	IDS	1
214m	?	>93	>1×10 ³	IDS	1
213m	(25/2)	>168	>1×10 ³	IDS	1
212m1	(18)	420	>1×10 ³	IDS	1
212m2	(8,9)	1500	>1×10 ³	IDS	1
203m	1/2	0.305	1.9×10 ⁶	IDS	0.5
195	(9/2)	183	1.4×10 ⁷	IDS	0.5
193	(9/2)	63.6	3×10 ⁶	IDS	0.5
189m	(1/2)	0.005	1	WM	2.5
188m1 188m2	(3)	0.06	20	WM	1.5
	(10)	0.265	10 ²	WM	
187g	(9/2)	0.037	0.3	WM	2.5

Yields were estimated using the observed during the IS608 run count rates with the known/extrapolated isomer ratios.

Thallium contaminats for A = 187-191 were not a problem during the IS608 run.

Measurements for A = 203 are planned at IDS by IT gamma transition monitoring. Thus, stable 203 TI will not disturb these measurements.

²¹⁴Ra and daughter ²¹⁰Rn have weak beta-decay branches (0.06% and 4%). The overall contaminant gamma intensity will not exceed 10³ 1/s which is comparable with the expected Bi gamma lines intensity (IDS).

In total, 16 Shifts are requested for Bi IS/hfs studies. By accounting for 3 remaining shifts from IS608, the present beam-time request is 13 shifts

Shape coexistence study in the Pb region

189**Bi**m

The similar estimation for ^{191g, 191m}Bi was checked during the IS608 run

$$^{189} Bi^g: T_{1/2} = 658 \text{ ms, } t_{coll} = 1 \text{ SC, } I_{max} \left(^{189} Bi^g\right) = 1800$$

$$^{189} Bi^m: T_{1/2} = 5 \text{ ms, isomer ratio R} \sim 6,$$
 relative decay losses L $\sim (T_{1/2} (^{189} Bi^g)/T_{1/2} (^{189} Bi^m) = 130$
$$t_{coll} = 9 \text{ SC}$$

$$I_{max} \left(^{189} Bi^m\right) = I_{max} \left(^{189} Bi^g\right) / \text{ R} / L^* t_{coll} = 20$$

$$60 \text{ points} \sim 7 \text{ hours}$$

Isomers: MR-ToF vs IDS

In MR-ToF mode the isomer hfs is buried under the gs hfs. Keeping in mind small isomer ratio (~0.1) it is preferable to use IT transitions at IDS to obtain pure isomer hfs

Target temperature

Target temperature

 $Y(^{200}Bi^{g}) / Y(^{200}Bi^{m2}) = 40$

for completely similar ¹⁹⁸BI: $Y(^{198}Bi^{g}) / Y(^{198}Bi^{m2}) = 4$

more than order of magnitude decay losses due to low target temperature!

First RILIS-IDS hfs scan

¹⁸⁸Bi: Isomer selective beta delayed fission

at these frequencies we obtain at the exit of the mass-separator...

¹⁸⁸Bi: Isomer selective beta delayed fission

$$P_{\text{bDF}}(^{188}\text{Bi}, I = 10) = 6.0(1.7) \cdot 10^{-4}$$

Fission fragment mass distribution is similar to that for ¹⁹⁶At where multimodal fission was found.

A reminder on the underlying physics phenomena

Potential energy curves for ^{189, 209, 222}Bi calculated in HFB approach with Gogny forces D1S

A gradual transition to deformed configurations is expected when moving towards either neutron-deficient or neutron-rich Bi isotopes

Many-minima picture was obtained for the ^{187, 188}Bi, where the competition of at least four minima at oblate/prolate sides takes place.

Bi: high-spin isomers

L. Chen et al., Nucl. Phys. A 882 (2012) 71 $T_{1/2}$ >168 s; intensive IT branch

 $^{212} \text{Bi}^{\text{m1}} (\pi h_{9/2}, \text{vg}_{9/2})_{8, 9}, \,^{212} \text{Bi}^{\text{m2}} [\pi h_{9/2}, ((\text{vg}_{9/2})^2, \text{vi}_{11/2})]_{18}$

L. Chen et al., PRL 110, 122502 (2013); unobserved IT branch of 75% is implied

J. Kurpeta et al., Eur. Phys. J. A 18, 31 (2003)

Bi: hfs spectra

Bi: relative radii

For comparison of radii trends for different isotopic chains it is better to use relative $\delta < r^2 >$: $\delta < r^2 >_{N.126} / \delta < r^2 >_{124.122}$

Even-N nuclei: shape evolution in the Bi and TI isotopic chains markedly differs from each other, although these chains are "mirror" in respect to the filled proton shell (Z = 82)

Radii trend for ₈₃Bi is intermediate between "spherical" ₈₂Pb trend and ₈₄Po trend with the onset of deformation

Bi: relative radii

Radius of the strongly deformed ¹⁸⁸Bi is found on the continuation of the Po-trend

Comparison of 81Tl and 80Hg with 82Pb

Large prolate deformation for ^{181, 183, 185}Hg. Return to "sphericity": to the same Pb-Tl trend

Bi & Tl: magnetic moments

Bi: main results

- 1. $\delta < r^2 >$, μ , Q_s for 25 Bi isotopes/isomers
- 2. Marked deviation of Bi $\delta < r^2 >$ trend from (spherical) Pb & Tl trend at N < 109, onset of small oblate deformation (?)
- 3. Large isomer shift (shape coexistence) for intruder isomers
- 4. Large shape staggering at A = 188 (N = 105)
- 5. Systematic behaviour of $I^{\pi} = 9/2^- (\pi h_{9/2})$ and $I^{\pi} = 10^- (\pi h_{9/2}, vi_{13/2})$ magnetic moments, deviation for A = 215, 217
- 6. First isomer selective βDF study (¹⁸⁸Bi). Spin dependence of βDF