Measurement of the 241 Am(n, γ) cross section at low energies at EAR2 F. Gunsing¹, P. Schillebeeckx², O. Aberle³, M. Bacak^{1,3,4}, E. Berthoumieux¹, D. Cano-Ott⁵, M. Diakaki⁶, E. Dupont¹, T. Glodariu⁷, J. Heyse², E. Mendoza⁵, A. Negret⁷, A. Oprea⁷, and the n-TOF Collaboration Spokespersons: F. Gunsing, P. Schillebeeckx $<\!frank.gunsing@cea.fr\!>, <\!peter.schillebeeckx@ec.europa.eu\!>$ **Technical coordinator:** O. Aberle <oliver.aberle@cern.ch> ¹CEA Saclay, Irfu, Gif-sur-Yvette, France ²European Commission, Joint Research Centre, Geel, Retieseweg 111, B-2440 Geel, Belgium ³European Organization for Nuclear Research (CERN), Switzerland ⁴ Technische Universität Wien, Austria ⁵Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain ⁶National Technical University of Athens, Greece ⁷Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania #### ²⁴¹Am(n,γ) at n_TOF #### **Previous measurement at n_TOF:** - Two measurements performed at n_TOF (EAR1) in 2010 - one with BaF₂ TAC - one with C₆D₆ - Same sample was used for both capture setups - About 3 GBq activity, mainly, but not only, 60 keV γ, high background from radioactivity (90% near thermal) - Broken dummy sample containing Sm (high thermal cross section) - Thermal energy point (25.3 meV) not covered #### **Proposal:** - Measure now same sample in EAR2 - extended DAQ time-range, fully covers thermal region - highly improved signal to (radioactive) noise ratio #### ²⁴¹Am sample Sample preparation: ORNL → CEA(Marcoule/Cadarache) → JRC-ITU 1 sample AmO_2 in Y_2O_3 (300 mg) 9 samples AmO_2 in $\overline{Al_2O_3}$ (30-40 mg) **@JRC-Geel:** (n,2n) ← Sage et al. PRC81 (2010) 064604 @n_TOF-CERN: (n,γ) ← Fraval et al. PRC89 (2014) 044609 ← Mendoza et al. ND2016 ## Radioactive background ²⁴¹Am sample ## Spectra 241 Am(n, γ) n_TOF C_6D_6 ## Spectra ²⁴¹Am(n,γ) n_TOF C₆D₆ PRC 89 (2014) 044609 ## ²⁴¹Am(n,γ) Results from previous measurement #### **Previous measurement at n_TOF:** - Resolved resonance analysis up to 320 eV (limit was 150 eV) - 362 resonances of which 172 new ones - Statistical analysis of levels (level density) - Estimated thermal cross section (25.3 meV) has 10% uncertainty - Unresolved resonance analysis up to 150 keV #### ²⁴¹Am(n,γ) thermal cross section PRC 89 (2014) 044609 ### ²⁴¹Am (n, γ) resonances, PRC 89 (2014) 044609 ### ²⁴¹Am(n,γ) reactions/bin in EAR2 ### ²⁴¹Am(n,γ) reactions/ns in EAR2 #### Conclusion #### Improvements over 2010 measurement in EAR1: - less impact in EAR2 from huge radioactive background - extended DAQ range in time (down to subthermal energies) #### Beam time request (EAR2): • focus on low energy region | sample | protons $\times 10^{18}$ | |--|--------------------------| | $^{241}\mathrm{Am}$ | 0.5 | | dummy | 0.2 | | empty can | 0.1 | | $\mathrm{nat}_{\mathrm{C}}$ | 0.1 | | ¹⁹⁷ Au, ^{nat} Ag, ^{nat} U | 0.4 | | neutron filters | 0.2 | | contingency | 0.1 | | | | | total | 1.6 |