

Measurement of the 241 Am(n, γ) cross section at low energies at EAR2

F. Gunsing¹, P. Schillebeeckx², O. Aberle³, M. Bacak^{1,3,4}, E. Berthoumieux¹, D. Cano-Ott⁵, M. Diakaki⁶, E. Dupont¹, T. Glodariu⁷, J. Heyse², E. Mendoza⁵, A. Negret⁷, A. Oprea⁷, and the n-TOF Collaboration

Spokespersons: F. Gunsing, P. Schillebeeckx

 $<\!frank.gunsing@cea.fr\!>, <\!peter.schillebeeckx@ec.europa.eu\!>$

Technical coordinator: O. Aberle <oliver.aberle@cern.ch>

¹CEA Saclay, Irfu, Gif-sur-Yvette, France

²European Commission, Joint Research Centre, Geel, Retieseweg 111, B-2440 Geel, Belgium

³European Organization for Nuclear Research (CERN), Switzerland

⁴ Technische Universität Wien, Austria

⁵Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain

⁶National Technical University of Athens, Greece

⁷Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania

²⁴¹Am(n,γ) at n_TOF

Previous measurement at n_TOF:

- Two measurements performed at n_TOF (EAR1) in 2010
 - one with BaF₂ TAC
 - one with C₆D₆
- Same sample was used for both capture setups
- About 3 GBq activity, mainly, but not only, 60 keV γ, high background from radioactivity (90% near thermal)
- Broken dummy sample containing Sm (high thermal cross section)
- Thermal energy point (25.3 meV) not covered

Proposal:

- Measure now same sample in EAR2
 - extended DAQ time-range, fully covers thermal region
 - highly improved signal to (radioactive) noise ratio

²⁴¹Am sample

Sample preparation:

ORNL → CEA(Marcoule/Cadarache) → JRC-ITU

1 sample AmO_2 in Y_2O_3 (300 mg)

9 samples AmO_2 in $\overline{Al_2O_3}$ (30-40 mg)

@JRC-Geel: (n,2n) ← Sage et al. PRC81 (2010) 064604

@n_TOF-CERN: (n,γ) ← Fraval et al. PRC89 (2014) 044609 ← Mendoza et al. ND2016

Radioactive background ²⁴¹Am sample

Spectra 241 Am(n, γ) n_TOF C_6D_6

Spectra ²⁴¹Am(n,γ) n_TOF C₆D₆

PRC 89 (2014) 044609

²⁴¹Am(n,γ) Results from previous measurement

Previous measurement at n_TOF:

- Resolved resonance analysis up to 320 eV (limit was 150 eV)
- 362 resonances of which 172 new ones
- Statistical analysis of levels (level density)
- Estimated thermal cross section (25.3 meV) has 10% uncertainty
- Unresolved resonance analysis up to 150 keV

²⁴¹Am(n,γ) thermal cross section

PRC 89 (2014) 044609

²⁴¹Am (n, γ) resonances,

PRC 89 (2014) 044609

²⁴¹Am(n,γ) reactions/bin in EAR2

²⁴¹Am(n,γ) reactions/ns in EAR2

Conclusion

Improvements over 2010 measurement in EAR1:

- less impact in EAR2 from huge radioactive background
- extended DAQ range in time (down to subthermal energies)

Beam time request (EAR2):

• focus on low energy region

sample	protons $\times 10^{18}$
$^{241}\mathrm{Am}$	0.5
dummy	0.2
empty can	0.1
$\mathrm{nat}_{\mathrm{C}}$	0.1
¹⁹⁷ Au, ^{nat} Ag, ^{nat} U	0.4
neutron filters	0.2
contingency	0.1
total	1.6

