Investigating the key rp process reaction 61 Ga(p, γ) 62 Ge, via 61 Zn(d,p) 62 Zn transfer G. Lotay¹, **D.T. Doherty¹**, W.N. Catford¹, Zs. Podolyak¹, P.A. Butler², R.D. Page², D.K. Sharp³, S.J. Freeman³, M. Labiche⁴, B.P. Kay⁵, C.R. Hoffman⁵, R.V.F. Janssens⁵, D.G. Jenkins⁶, N. Orr⁷, A. Matta⁷, L. Gaffney⁸ ¹Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH. UK. ²Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE, UK. ³School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL. UK. ⁴STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD. UK. ⁵Physics Division, Argonne National Laboratory, Argonne, Illinois, 60439. USA. ⁶Department of Physics, University of York, Heslington, York, YO10 5DD. UK. ⁷LPC-ENSICAEN, IN2P3/CNRS et Universite de Caen, 1405 Caen, FRANCE. ⁸ ISOLDE, CERN ISOLDE INTC, 8th Feb, 2017 The observation of X-ray bursts is interpreted as thermonuclear explosions in the atmosphere of a neutron star in a close binary system. As temperature and density at the surface of the neutron star increase, the CNO cycles breakout into the *rp* process. Sensitivity studies highlight the key reactions for understanding these bursts \rightarrow ⁶¹Ga(p,γ)⁶²Ge suggested as being particularly important Effect on the final abundances from varying the 61 Ga(p, γ) 62 Ge reaction rate within its associated uncertainties. | Reaction | Models Affected | |---|--| | $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}^{\text{a}}$ | F08, K04-B2, K04-B4, K04-B5 | | 18 Ne(α , p) 21 Na a | K04-B1 ^b | | 25 Si $(\alpha, p)^{28}$ P | K04-B5 | | 26g Al $(\alpha, p)^{29}$ Si | F08 | | $^{29}S(\alpha, p)^{32}C1$ | K04-B5 | | $^{30}P(\alpha, p)^{33}S$ | K04-B4 | | 30 S(α , p) 33 C1 | K04-B4, ^b K04-B5 ^b | | $^{31}Cl(p, \gamma)^{32}Ar$ | K04-B1 | | $^{32}S(\alpha, \gamma)^{36}Ar$ | K04-B2 | | 56 Ni $(\alpha, p)^{59}$ Cu | S01, ^b K04-B5 | | 57 Cu(p, γ) 58 Zn | F08 | | 59 Cu(p, γ) 60 Zn | S01, ^b K04-B5 | | 61 Ga(p, γ) 62 Ge | F08, K04-B1, K04-B2, K04-B5, K04-B6 | | 65 As $(p, \gamma)^{66}$ Se | K04, ^b K04-B1, K04-B2, ^b K04-B3, ^b K04-B4, K04-B5, K04-B6 | | 69 Br $(p, \gamma)^{70}$ Kr | K04-B7 | | 75 Rb $(p, \gamma)^{76}$ Sr | K04-B2 | | 82 Zr(p, γ) 83 Nb | K04-B6 | | 84 Zr(p, γ) 85 Nb | K04-B2 | | 84 Nb(p, γ) 85 Mo | K04-B6 | | 85 Mo(p, γ) 86 Tc | F08 | | 86 Mo(p, γ) 87 Tc | F08, K04-B6 | | $^{87}\text{Mo}(p, \gamma)^{88}\text{Tc}$ | K04-B6 | | 92 Ru(p, γ) 93 Rh | K04-B2, K04-B6 | | 93 Rh $(p, \gamma)^{94}$ Pd | K04-B2 | | 96 Ag(p, γ) 97 Cd | K04, K04-B2, K04-B3, K04-B7 | | 102 In $(p, \gamma)^{103}$ Sn | K04, K04-B3 | | 103 In $(p, \gamma)^{104}$ Sn | K04-B3, K04-B7 | | 103 Sn $(\alpha, p)^{106}$ Sb | S01 ^b | $\begin{tabular}{ll} TABLE~19\\ Summary~of~the~Most~Influential~Nuclear~Processes,~as~Collected~from~Tables~1-10\\ \end{tabular}$ | Reaction | Models Affected | |---|---| | $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}^{\text{a}}$ | F08, K04-B2, K04-B4, K04-B5 | | 18 Ne(α , p) 21 Na a | | | $^{25}\text{Si}(\alpha, p)^{28}\text{P}$ | | | 26g Al $(\alpha, p)^{29}$ Si | . F08 | | $^{29}S(\alpha, p)^{32}C1$ | . K04-B5 | | $^{30}P(\alpha, p)^{33}S$ | . K04-B4 | | 30 S(α , p) 33 C1 | K04-B4, $K04-B5$ | | 31 Cl $(p, \gamma)^{32}$ Ar | | | $^{32}S(\alpha, \gamma)^{36}Ar$ | . K04-B2 | | 56 Ni $(\alpha, p)^{59}$ Cu | | | 57 Cu(p, γ) 58 Zn | . F08 | | 59 Cu $(p, \gamma)^{60}$ 7n | S01, K04-D5 | | 61 Ga(p, γ) 62 Ge | F08, K04-B1, K04-B2, K04-B5, K04-B6 | | 65 As $(p, \gamma)^{66}$ Se | . K04, K04-B1, K04-B2, K04-B3, K04-B4, K04-B5, K04-B6 | | 69 Br $(p, \gamma)^{70}$ Kr | | | 75 Rb $(p, \gamma)^{76}$ Sr | | | 82 Zr(p, γ) 83 Nb | | | 84 Zr(p, γ) 85 Nb | | | 84 Nb(p, γ) 85 Mo | . K04-B6 | | 85 Mo(p, γ) 86 Tc | | | $^{86}\text{Mo}(p, \gamma)^{87}\text{Tc}$ | | | 87 Mo(p, γ) 88 Tc | | | 92 Ru(p, γ) 93 Rh | | | 93 Rh $(p, \gamma)^{94}$ Pd | | | 96 Ag(p, γ) 97 Cd | | | 102 In $(p, \gamma)^{103}$ Sn | | | 103 In $(p, \gamma)^{104}$ Sn | | | 103 Sn(α , p) 106 Sb | . S01 ^b | A. Parikh, J. Jose, F. Moreno and C. Iliadis, Astrophys. J. Suppl. Ser. 178, 110 (2008). #### States of Interest in 62Zn 2186 keV Proton separation energy in ⁶²Ge is 2053(145) keV - uncertainty from mass data Mirror energy differences from theory Rate expected to be dominated by low-spin states | 3043 keV |
0+ | |----------|--------| | 2884 keV |
2+ | | 2803 keV |
2+ | | 2744 keV | 4+ | | 2384 keV |
3+ | | 2330 keV |
0+ | | | | #### Levels of Interest The Spectroscopic factor (C²S) is directly related to the proton widths and, hence, the resonance strengths. $$\omega \gamma = \omega \frac{\Gamma_p \Gamma_{\gamma}}{\Gamma_p + \Gamma_{\gamma}} \approx \omega \frac{\Gamma_p \Gamma_{\gamma}}{\Gamma_{\gamma}} \approx \omega \Gamma_p.$$ $\Gamma_p = C^2 S \Gamma_{sp}$ Will be extracted from the proton yields with the ADWA code TWOFNR. Recent success for the astrophysically important ²⁷Al- ²⁷Si system. V. Margerin et al., PRL **115** 062701 (2015) C²S of mirror analog states are expected to agree within 20% N. K. Timofeyuk, R. C. Johnson, and A. M. Mukhamedzhanov, PRL **91**, 232501 (2003) N. K. Timofeyuk, P. Descouvemont, and R. C. Johnson, Eur. Phys. J. A **27**, 269 (2006). ## ISS – ISOLDE Solenoidal Spectrometer - 4T superconducting solenoid. - Obtained as MRI magnet from Brisbane. - Arrived @ CERN in April 2016. - Dedicated to transfer reactions with HIE-ISOLDE. - New Si array designed and under construction (ready after LS2). - First experiments with ANL array. ### **Experimental Details** $10^{\circ} < \theta_{\text{CM}} < 30^{\circ} => \text{protons emitted at backward lab angles}$ Proton energies ~10 MeV ## Beam composition 7.5 MeV/u ⁶¹Zn beam of minimum intensity 4 x 10⁵ pps Ga contamination to be suppressed with RILIS ionisation of Zn Stable ⁶¹Ni contaminant highlighted in TAC meeting, known spectrum. See below. ### Summary of Beam Time Request To study the 61 Zn(d,p) 62 Zn reaction for the first time as a probe of the key rp process reaction, 61 Ga(p, γ) 62 Ge. Obtained spectroscopic factors will be used to determine the properties of proton-unbound levels in 62 Ge, therefore, placing the first ever constraints on the key 61 Ga(p, γ) 62 Ge reaction in X-ray burst environments. Complementary to the two previously approved proposals for the ISOL Solenoid Spectrometer. We request a total of 21 shifts with a 457.5-MeV 61 Zn beam (7.5 MeV/u) at a minimum intensity of 4 x 10^5 pps in order to perform the experiment. #### Thank you very much! G. Lotay¹, **D.T. Doherty¹**, W.N. Catford¹, Zs. Podolyak¹, P.A. Butler², R.D. Page², D.K. Sharp³, S.J. Freeman³, M. Labiche⁴, B.P. Kay⁵, C.R. Hoffman⁵, R.V.F. Janssens⁵, D.G. Jenkins⁶, N. Orr⁷, A. Matta⁷, ⁸L. Gaffney ¹Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH. UK. ²Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE, UK. ³School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL. UK. ⁴STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD. UK. ⁵Physics Division, Argonne National Laboratory, Argonne, Illinois, 60439. USA. ⁶Department of Physics, University of York, Heslington, York, YO10 5DD. UK. ⁷LPC-ENSICAEN, IN2P3/CNRS et Universite de Caen, 1405 Caen, FRANCE. ⁸ ISOLDE, CERN ISOLDE INTC, 8th Feb, 2017 ## Timeline of ISS events | | | | | | 2017 → | | | | | | | |----------|------|------|------|-------|-------------------|--------------------------------------|-----------|------|-----------------|----------|--------| | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Jan. | Feb | Mar. | | Deli | very | | | | | Design and construction of Si array> | | | | | array> | | | | | | Safet | y files | | | | | | | | | | | | | | ٧ | acuum tes | ts | | | | | | | - | _ | | | | | | LN ₂ | | | | ← 2016 → | | | | | | | | Не | | | | | | | | | · | | | | | | Energize | | | | | | | | | | | | | Move to | | | | | | | | | | | | | ISOLDE | - First experiments in 2018, before LS2. - Delivery of stable beams at end of 2017? | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | |--------|----------|----------|----------|---------------------|-------------|------|------|------| | array> | | | | HIE-ISOLDE campaign | ← | 2017 - | > | | | | | | | | `
 | | ·
 | | | | | | | | | | | | | | | | Coupling | | | | | | | | | | to XT02 | | | | | | | | | | | Shield | ing> | | | | | | | | | Field ma | pping> | | | | | | #### HELIOS @ ANL - Demonstrated in multiple experiments with 12 < A < 136. - Resolution of 75 keV achieved. - In-flight beams ~100 keV. - Array to be used with ISS@ISOLDE.