Investigating the key rp process reaction 61 Ga(p, γ) 62 Ge, via 61 Zn(d,p) 62 Zn transfer

G. Lotay¹, **D.T. Doherty¹**, W.N. Catford¹, Zs. Podolyak¹, P.A. Butler², R.D. Page², D.K. Sharp³, S.J. Freeman³, M. Labiche⁴, B.P. Kay⁵, C.R. Hoffman⁵, R.V.F. Janssens⁵, D.G. Jenkins⁶, N. Orr⁷, A. Matta⁷, L. Gaffney⁸

¹Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH. UK.

²Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE, UK.

³School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL. UK.

⁴STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD. UK.

⁵Physics Division, Argonne National Laboratory, Argonne, Illinois, 60439. USA.

⁶Department of Physics, University of York, Heslington, York, YO10 5DD. UK.

⁷LPC-ENSICAEN, IN2P3/CNRS et Universite de Caen, 1405 Caen, FRANCE.

⁸ ISOLDE, CERN
ISOLDE INTC, 8th Feb, 2017

The observation of X-ray bursts is interpreted as thermonuclear explosions in the atmosphere of a neutron star in a close binary system.

As temperature and density at the surface of the neutron star increase, the CNO cycles breakout into the *rp* process.

Sensitivity studies highlight the key reactions for understanding these bursts \rightarrow ⁶¹Ga(p,γ)⁶²Ge suggested as being particularly important

Effect on the final abundances from varying the 61 Ga(p, γ) 62 Ge reaction rate within its associated uncertainties.

Reaction	Models Affected
$^{12}\text{C}(\alpha, \gamma)^{16}\text{O}^{\text{a}}$	F08, K04-B2, K04-B4, K04-B5
18 Ne(α , p) 21 Na a	K04-B1 ^b
25 Si $(\alpha, p)^{28}$ P	K04-B5
26g Al $(\alpha, p)^{29}$ Si	F08
$^{29}S(\alpha, p)^{32}C1$	K04-B5
$^{30}P(\alpha, p)^{33}S$	K04-B4
30 S(α , p) 33 C1	K04-B4, ^b K04-B5 ^b
$^{31}Cl(p, \gamma)^{32}Ar$	K04-B1
$^{32}S(\alpha, \gamma)^{36}Ar$	K04-B2
56 Ni $(\alpha, p)^{59}$ Cu	S01, ^b K04-B5
57 Cu(p, γ) 58 Zn	F08
59 Cu(p, γ) 60 Zn	S01, ^b K04-B5
61 Ga(p, γ) 62 Ge	F08, K04-B1, K04-B2, K04-B5, K04-B6
65 As $(p, \gamma)^{66}$ Se	K04, ^b K04-B1, K04-B2, ^b K04-B3, ^b K04-B4, K04-B5, K04-B6
69 Br $(p, \gamma)^{70}$ Kr	K04-B7
75 Rb $(p, \gamma)^{76}$ Sr	K04-B2
82 Zr(p, γ) 83 Nb	K04-B6
84 Zr(p, γ) 85 Nb	K04-B2
84 Nb(p, γ) 85 Mo	K04-B6
85 Mo(p, γ) 86 Tc	F08
86 Mo(p, γ) 87 Tc	F08, K04-B6
$^{87}\text{Mo}(p, \gamma)^{88}\text{Tc}$	K04-B6
92 Ru(p, γ) 93 Rh	K04-B2, K04-B6
93 Rh $(p, \gamma)^{94}$ Pd	K04-B2
96 Ag(p, γ) 97 Cd	K04, K04-B2, K04-B3, K04-B7
102 In $(p, \gamma)^{103}$ Sn	K04, K04-B3
103 In $(p, \gamma)^{104}$ Sn	K04-B3, K04-B7
103 Sn $(\alpha, p)^{106}$ Sb	S01 ^b

 $\begin{tabular}{ll} TABLE~19\\ Summary~of~the~Most~Influential~Nuclear~Processes,~as~Collected~from~Tables~1-10\\ \end{tabular}$

Reaction	Models Affected
$^{12}\text{C}(\alpha, \gamma)^{16}\text{O}^{\text{a}}$	F08, K04-B2, K04-B4, K04-B5
18 Ne(α , p) 21 Na a	
$^{25}\text{Si}(\alpha, p)^{28}\text{P}$	
26g Al $(\alpha, p)^{29}$ Si	. F08
$^{29}S(\alpha, p)^{32}C1$. K04-B5
$^{30}P(\alpha, p)^{33}S$. K04-B4
30 S(α , p) 33 C1	K04-B4, $K04-B5$
31 Cl $(p, \gamma)^{32}$ Ar	
$^{32}S(\alpha, \gamma)^{36}Ar$. K04-B2
56 Ni $(\alpha, p)^{59}$ Cu	
57 Cu(p, γ) 58 Zn	. F08
59 Cu $(p, \gamma)^{60}$ 7n	S01, K04-D5
61 Ga(p, γ) 62 Ge	F08, K04-B1, K04-B2, K04-B5, K04-B6
65 As $(p, \gamma)^{66}$ Se	. K04, K04-B1, K04-B2, K04-B3, K04-B4, K04-B5, K04-B6
69 Br $(p, \gamma)^{70}$ Kr	
75 Rb $(p, \gamma)^{76}$ Sr	
82 Zr(p, γ) 83 Nb	
84 Zr(p, γ) 85 Nb	
84 Nb(p, γ) 85 Mo	. K04-B6
85 Mo(p, γ) 86 Tc	
$^{86}\text{Mo}(p, \gamma)^{87}\text{Tc}$	
87 Mo(p, γ) 88 Tc	
92 Ru(p, γ) 93 Rh	
93 Rh $(p, \gamma)^{94}$ Pd	
96 Ag(p, γ) 97 Cd	
102 In $(p, \gamma)^{103}$ Sn	
103 In $(p, \gamma)^{104}$ Sn	
103 Sn(α , p) 106 Sb	. S01 ^b

A. Parikh, J. Jose, F. Moreno and C. Iliadis, Astrophys. J. Suppl. Ser. 178, 110 (2008).

States of Interest in 62Zn

2186 keV

Proton separation energy in ⁶²Ge is 2053(145) keV

- uncertainty from mass data

Mirror energy differences from theory

Rate expected to be dominated by low-spin states

3043 keV	 0+
2884 keV	 2+
2803 keV	 2+
2744 keV	4+
2384 keV	 3+
2330 keV	 0+

Levels of Interest

The Spectroscopic factor (C²S) is directly related to the proton widths and, hence, the resonance strengths.

$$\omega \gamma = \omega \frac{\Gamma_p \Gamma_{\gamma}}{\Gamma_p + \Gamma_{\gamma}} \approx \omega \frac{\Gamma_p \Gamma_{\gamma}}{\Gamma_{\gamma}} \approx \omega \Gamma_p.$$
 $\Gamma_p = C^2 S \Gamma_{sp}$

Will be extracted from the proton yields with the ADWA code TWOFNR. Recent success for the astrophysically important ²⁷Al- ²⁷Si system. V. Margerin et al., PRL **115** 062701 (2015)

C²S of mirror analog states are expected to agree within 20%

N. K. Timofeyuk, R. C. Johnson, and A. M. Mukhamedzhanov, PRL **91**, 232501 (2003)

N. K. Timofeyuk, P. Descouvemont, and R. C. Johnson, Eur. Phys. J. A **27**, 269 (2006).

ISS – ISOLDE Solenoidal Spectrometer

- 4T superconducting solenoid.
- Obtained as MRI magnet from Brisbane.
 - Arrived @ CERN in April 2016.
- Dedicated to transfer reactions with HIE-ISOLDE.
- New Si array designed and under construction (ready after LS2).
 - First experiments with ANL array.

Experimental Details

 $10^{\circ} < \theta_{\text{CM}} < 30^{\circ} => \text{protons emitted at backward lab angles}$

Proton energies ~10 MeV

Beam composition

7.5 MeV/u ⁶¹Zn beam of minimum intensity 4 x 10⁵ pps

Ga contamination to be suppressed with RILIS ionisation of Zn

Stable ⁶¹Ni contaminant highlighted in TAC meeting, known spectrum. See below.

Summary of Beam Time Request

To study the 61 Zn(d,p) 62 Zn reaction for the first time as a probe of the key rp process reaction, 61 Ga(p, γ) 62 Ge.

Obtained spectroscopic factors will be used to determine the properties of proton-unbound levels in 62 Ge, therefore, placing the first ever constraints on the key 61 Ga(p, γ) 62 Ge reaction in X-ray burst environments.

Complementary to the two previously approved proposals for the ISOL Solenoid Spectrometer.

We request a total of 21 shifts with a 457.5-MeV 61 Zn beam (7.5 MeV/u) at a minimum intensity of 4 x 10^5 pps in order to perform the experiment.

Thank you very much!

G. Lotay¹, **D.T. Doherty¹**, W.N. Catford¹, Zs. Podolyak¹, P.A. Butler², R.D. Page², D.K. Sharp³, S.J. Freeman³, M. Labiche⁴, B.P. Kay⁵, C.R. Hoffman⁵, R.V.F. Janssens⁵, D.G. Jenkins⁶, N. Orr⁷, A. Matta⁷, ⁸L. Gaffney

¹Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH. UK.

²Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE, UK.

³School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL. UK.

⁴STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD. UK.

⁵Physics Division, Argonne National Laboratory, Argonne, Illinois, 60439. USA.

⁶Department of Physics, University of York, Heslington, York, YO10 5DD. UK.

⁷LPC-ENSICAEN, IN2P3/CNRS et Universite de Caen, 1405 Caen, FRANCE.

⁸ ISOLDE, CERN
ISOLDE INTC, 8th Feb, 2017

Timeline of ISS events

					2017 →						
Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb	Mar.
Deli	very					Design and construction of Si array>					array>
				Safet	y files						
						٧	acuum tes	ts			
		-	_						LN ₂		
← 2016 →								Не			
				·						Energize	
										Move to	
										ISOLDE	

- First experiments in 2018, before LS2.
- Delivery of stable beams at end of 2017?

Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.
array>				HIE-ISOLDE campaign				
			←	2017 -	>			
			` 		· 			
	Coupling							
	to XT02							
		Shield	ing>					
		Field ma	pping>					

HELIOS @ ANL

- Demonstrated in multiple experiments with 12 < A < 136.
- Resolution of 75 keV achieved.
 - In-flight beams ~100 keV.
- Array to be used with ISS@ISOLDE.

