

Nuclear-chemical synthesis of iron compounds and their Mössbauer identification

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

H. P. Gunnlaugsson, S. K. Dedushenko, L. Hemmingsen *et al.*,

Outline

- Introduction about ⁵⁷Mn ($T_{1/2} = 1.5 \text{ min.}$) \rightarrow ⁵⁷Fe
- Chemistry with ⁵⁷Mn
- Physics/chemistry that can be addressed here
- Mössbauer collaboration at ISOLDE/CERN
- Beam request

⁵⁷Mn ($T_{1/2}$ = 1.5 min.) and ⁵⁷Fe eMS

- Beam developed in 1996-1997: ~3·10⁸ s⁻¹
- Used for eMS in many experiments: IS-359, IS-426, IS-443, IS-501, IS-576, IS-578, I-161, IS-611, IS-612 & IS-630

 $\frac{\frac{57 \text{Mn (1.5 min)}}{\beta^{-}}}{\frac{57 \text{MFe (100 ns)}}{57 \text{Fe}}}$

Resonance detector

- Charge state
- Symmetry
- Magnetism
- Binding prop.
- ...

Ion-implantation

- Creates amorphous zones/regions
 - ➤ Anneal (sometimes) at low temperatures
 - Cases which cannot (easily) be studied with ion-implantation
- Point defects
 - ➤ Study of interactions of Fe/Mn atoms with point defects

Make materials with the probe

- Surface physics
 - ➤ Used successfully in ASPIC/VITO
 - \triangleright Implantation into catcher \Rightarrow transfer \Rightarrow MBE growth
 - ➤ Measurements with Perturbed Angular Correlation (PAC) spectroscopy
 - > Dictated by the life-time of the radioactive probe
 - ➤ Many fundamental papers on surface physics in the 1990's
- Biophysics
 - ➤ Used successfully for different isotopes (111m Cd, 199 Hg, ...) all with $T_{1/2} > 30$ minutes
 - \triangleright Implantation into ice \Rightarrow thawing \Rightarrow reactions
 - Measurements with PAC

Chemistry and eMS with ⁵⁷Mn (1.5 min)

- Implantation into thin foils on suitable (inert targets). 100 Å Mn or Zn on Cu or glass seem promising
- Removal from vacuum (~5 sec)
 - ➤ Addition to on-line eMS chamber available
- \blacksquare Dissolution (Mn_{metal} \rightarrow Mn_{aq}²⁺)
 - > ~1 M acid: instantaneous
 - > 0.2 M acid: few seconds

Chemistry with ⁵⁷Mn (cont)

- Chemical reactions
 - ➤ 1-300 seconds
- Transfer to a cold finger
- Off-line measurements (77 K – 273 K)
- Variables:
 - > Acid strength
 - Reaction time/temperature
 - Measurement temperature
 - ➤ ...

Chemical reaction (1-300 s)

Risk involved

- Radioactivity
 - $> \sim 27 \,\mu \text{Sv/h}$ at 30 cm distance
 - > ~50 μSv (total dose during ~5 day experiments)
 - > Transfer of (radiactive) acids in confined spaces
- Protocols have to be made that ensure the safety at all levels of measurements
 - ➤ Practice-practice-practice,
- Risk assessment
 - > ~25 min wait time in case of spills (radioactive)
 - Water to thin out chemical spills?
- No long lived impurities (MR-TOF)
 - ➤ No radioactive waste (only chemical)

Physics & eMS

- Mössbauer spectrum:
- $\delta \propto |\psi(0)|^2$
 - > \infty charge/spin state of the atom
- $\Delta E_{\rm Q} \propto {\rm V}_{ZZ}$ > ~ coordination
- Area $\propto f(T, \theta_D)$ > ~ binding properties

Nuclear chemical synthesis

- \bullet FeO₂ does not exist (Fe as Fe⁴⁺)
- However, MnO₂ exists
- \Rightarrow
 - ➤ Make ⁵⁷MnO₂
 - ➤ Wait for ⁵⁷FeO₂

High charge states of Fe

"Natural" charge states:

$$\rightarrow$$
 Mn: 2+, 3+, 4+, 5+, 6+, 7+, 8+

Oxidation involving Mn⁷⁺

$$> 2Mn^{2+} + 5NaBiO_3 + 14H^+ = 2MnO_4^- + 5Na^+ + 5Bi^{3+} + 7H_2O$$

- Freezing and wait for the decay... (β)
- The 100 ns lifetime of ^{57*}Fe, should not change the local configuration i.e. Fe⁷⁺ should be measured
- All supported by theoretical calculations

Future ...

- Isotopic exchange
 - $> 57 \text{Mn}^{2+} + 55 \text{Mn}^{2+} = 55 \text{Mn}^{2+} + 57 \text{Mn}^{2+}$
- Precipitation of MnO₂
 - \triangleright + comparison to direct implantation into MO₂ substrates
- Biological role: Mn²+ function as cofactors for a large variety of enzymes and are essential in detoxification of superoxide free radicals in organisms. This project may provide a new analytical method within this field of study

The eMS collaboration

Mößbauer m

The Mössbauer collaboration at ISOLDE/CERN, >30 active members Involved in 6 experiments at CERN Organize the WEMS conference series

Year	Rev. publications
2017	(2)
2016	5
2015	2
2014	4
2013	2
2012	10

Key people:

H. P. Gunnlaugsson, Copenhagen: eMS

S. K. Dedushenko, Moscow:

Chemistry & MS

L. Hemmingsen, Copenhagen:

Biophysics & PAC

S. P. A. Sauer, Copenhagen:

Chemistry, simulations

J. Bendix, Copenhagen, Calculations

Beam request

- For each reaction (See tables), one needs to:
 - vary reaction time/temperature
 - > strength (acid)
 - possibly repeat to get sufficient statistics
 - ➤ Measurement temperature
 - **>**
- Each measurement: ~10 min.
 - > +20% calibration
 - > +20% contingency
- 14 shifts requested for the next 3 operation years

	Carrier, pH etc.	Reaction
1a	no carrier (-)	
1b	MnSO ₄ , 10 ⁻⁵ M	$Mn + 2H^+ \rightarrow Mn^{2+} + H_2 \uparrow \text{ (with 1M H}_2SO_4)$
1c	MnSO ₄ 0.01M	
2	-	$Mn + HNO_3 \rightarrow Mn^{2+} +$ (with $1M HNO_3$)
3a	-	
3b	MnSO ₄ , 10 ⁻⁵ M	$2Mn^{2+} + 5NaBiO_3 + 14H^+ = 2MnO_4 + 5Na^+ + 5Bi^{3+} + 7H_2O$
3c	MnSO ₄ , 0.01M	
4a	MnSO ₄ , 0.01M	$MnO_4^- + C_2O_4^{-2} + OH^- \rightarrow MnO_4^{-2} + CO_3^{-2} + H_2O \text{ (with NaOH)}$
4b	MnSO ₄ , 2M	$MnO_4 + C_2O_4^2 \rightarrow MnO_2 \downarrow + CO_2 \uparrow$ (in neutral solution)
5a	-	
5b	MnSO ₄ , 10 ⁻⁵ M	$MnO_4^{-1} + SO_3^{-2} + OH^{-1} \rightarrow MnO_4^{-2} + SO_4^{-2} + H_2O$ (with NaOH)
5c	MnSO ₄ , 0.01M	
6a	-	$MnO_4^- + SO_3^{-2} + OH \rightarrow MnO_4^{-3} + O_2 + H_2O$ (with strong NaOH)
6b	MnSO ₄ , 0.01M	
7a	-, pH=7	
7b	-, pH=9	$Mn^{2+} + H_2O_2 (30\text{-}50\%) + NaOH \rightarrow Mn^{3+} / Mn^{4+} (e.g. MnO_2)$
7c	-, pH=14	
7d	MnSO ₄ , 0.01M, pH=7	
7e	MnSO ₄ , 0.01M, pH=9	
7f	MnSO ₄ , 0.01M, pH=14	
	MnSO ₄ , 0.01M, pH=0	
	MnSO ₄ , 0.01M, pH=1	$^{57}Mn^{2+} + ^{55}MnO_4^{-} = ^{55}Mn^{2+} + ^{57}MnO_4^{-}$
8	MnSO ₄ , 0.01M, pH=3	(isotopic exchange in different media)
	MnSO ₄ , 0.01M, pH=7	in acidic should be observed.
	MnSO ₄ , 0.01M, pH=9	

Thanks for your attention

