Measurement of the ²⁴¹Am fission cross-section

A. Tsinganis¹, M.Diakaki², R. Vlastou², M. Kokkoris², N. Colonna³, J. Heyse⁴, L.Tassan-Got¹, N.Patronis⁵, A. Stamatopoulos² and the n_TOF Collaboration

- 1) European Organisation for Nuclear Research (CERN), Geneva, Switzerland
- 2) Department of Physics, National Technical University of Athens, Greece
- 3) Istituto Nazionale di Fisica Nucleare (INFN), Bari, Italy
- 4) European Commission JRC, Institute for Reference Materials and Measurements, Geel, Belgium
- 5) Department of Physics, University of Ioannina, Greece

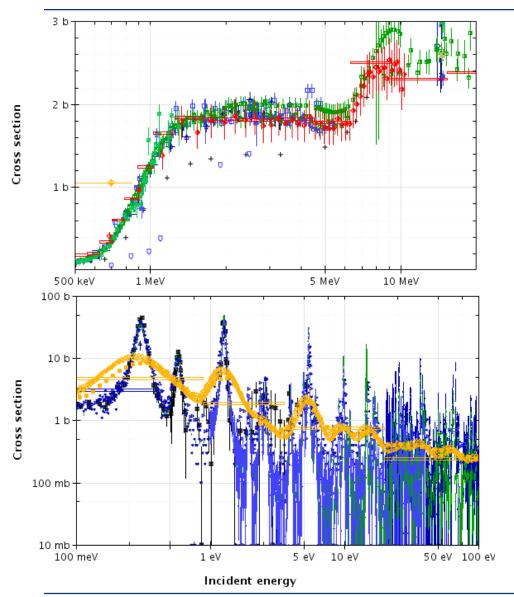
Outline

- Introduction
 - Motivation and status of data
 - Previous n_TOF measurement
- Experimental setup
 - Samples
 - Detectors and electronics
- Expected count rates and beam request
- Summary

Introduction

Motivation – Status of data

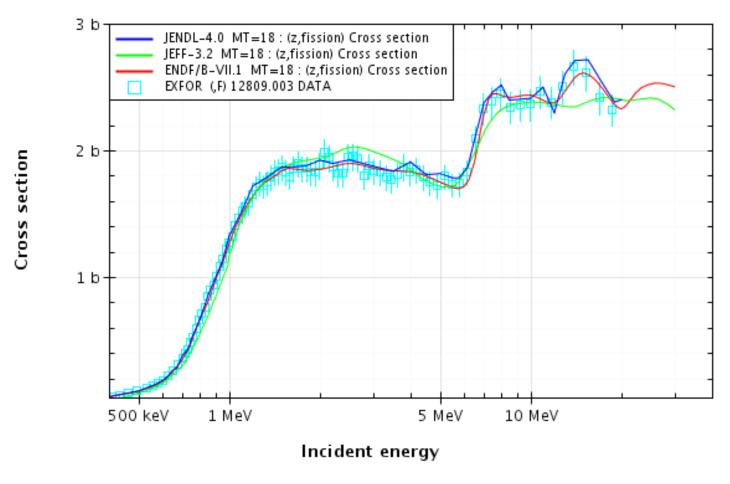
Motivation


- The isotope ²⁴¹Am is present in high-level nuclear waste
- Important for different waste transmutation and recycling scenarios
- ²⁴¹Am(n,f) reaction included in the NEA High Priority Request List
- The present experimental uncertainties do not meet the requirements set by sensitivity studies of advanced nuclear systems

	Uncertainty	
Range	Initial	Target
19.6 - 6.07 MeV	12.7	5.7
6.07 - 2.23 MeV	11.7	1.7
2.23 - 1.35 MeV	9.8	1.4
1.35 - 0.498 MeV	8.3	1.2
183 - 498 keV	8.3	4.0

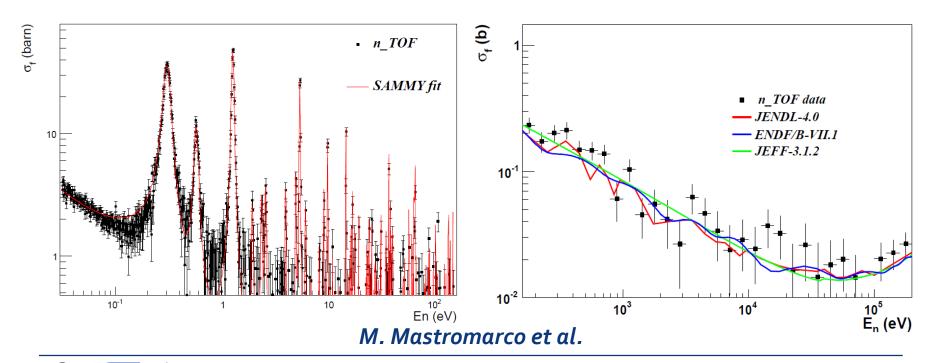
NEA Nuclear Data High Priority Request List, www.nea.fr/html/dbdata/hprl
OECD/NEA WPEC Subgroup 26 Final Report, www.nea.fr/html/science/wpec/volume26/volume26.pdf

Present status of data



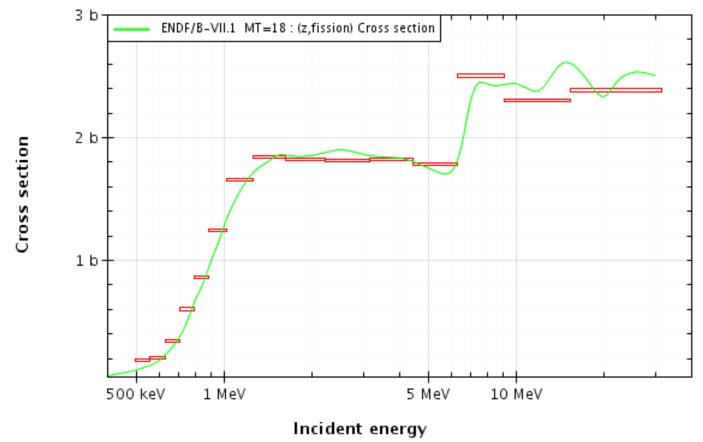
- Measurements of ²⁴¹Am(n,f) are challenging for two main reasons:
 - Relatively short half-life of 433y (127 MBq/mg, 100% α)
 - Steep fission threshold with value decreasing rapidly below 1 MeV, reaching 100 mb already at 500 keV incident neutron energy
- Significant discrepancies among existing data can be observed both above the fission threshold and at lower energies

Present status of data



• This situation is also reflected in the discrepancies among evaluated libraries, which mostly follow the data by Dabbs et al. (1983)

Previous n_TOF measurement


- Performed in Phase-I (2001-2004) (EAR-1 with large collimator)
- Total mass: 2.26mg (35MBq/sample, 8 samples)
- High amplitude threshold applied to deal with the high α -activity
 - Data normalized to 3rd resonance in Dabbs data
- Results at low energies (e.g.):

Previous n_TOF measurement

- Low statistics at and above fission threshold
- Variable bin width chosen to keep statistical uncertainty <2%

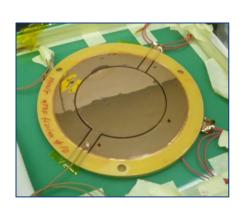
F. Belloni et αl., Eur. Phys. J. A (2013) 49: 2, 10.1140/epjα/i2013-13002-3

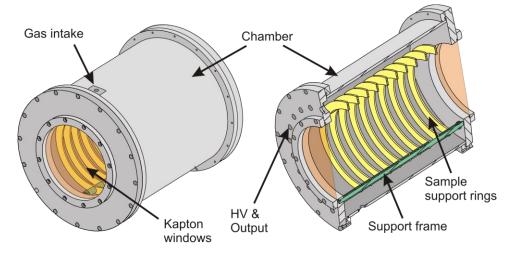
The new proposal

- Perform the measurement in EAR-2
 - Maximization of the flux with the large collimator
 - Lower activity per sample
 - Stronger background suppression
 - → Higher statistics in wide energy range

Experimental setup

Samples – Detectors and electronics


Samples

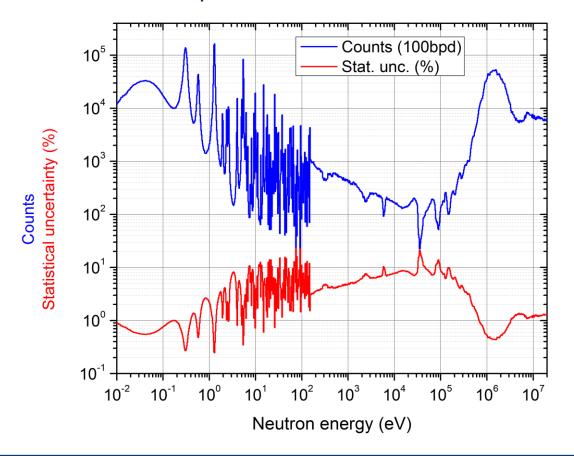

- To be prepared at JRC-IRMM
- Proposed sample characteristics
 - Low mass/activity per sample (~half of EAR-1)
 - 6cm diameter for large EAR-2 collimator
- Total mass ~2.5 times lower than EAR-1 measurement
- A further ~30% reduction of the activity could be achieved by reducing the diameter to 5cm, with small loss of flux, depending on the beam profile (to be checked)
- Exact information (e.g. ^{242m,243}Am) on impurities not yet available
- Reference samples:
 - ^{235,238}U, ¹⁰B

Sample characteristics	
Area density (μg/cm²)	5
Diameter (cm)	6
Activity (MBq)	17.9
Mass (mg)	0.14
No. of samples	6
Total mass (mg)	0.85
Total activity (MBq)	107.7

Experimental setup

- Based on Micromegas microbulk detectors
- Existing chamber houses up to 10 sample-detector modules
 - Filled with circulating Ar:CF₄:isoC₄H₁₀ mixture (88:10:2) at 1 bar

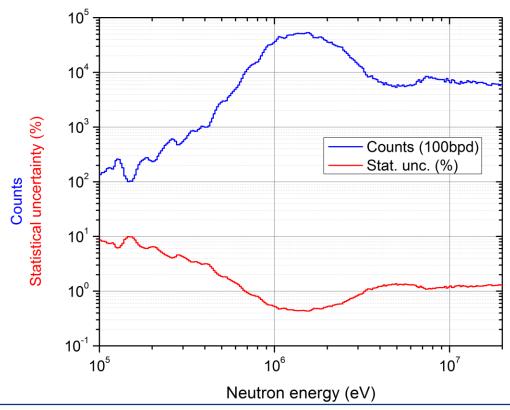
- Various improvements based on past experience
 - Electronics
 - Preamplifier modules with one channel each (no cross-talk)
 - Compact, shielded modules (better response to γ-flash)
 - Drift gap reduction (faster signal)



Beam request

Expected count rates and beam request

Beam request

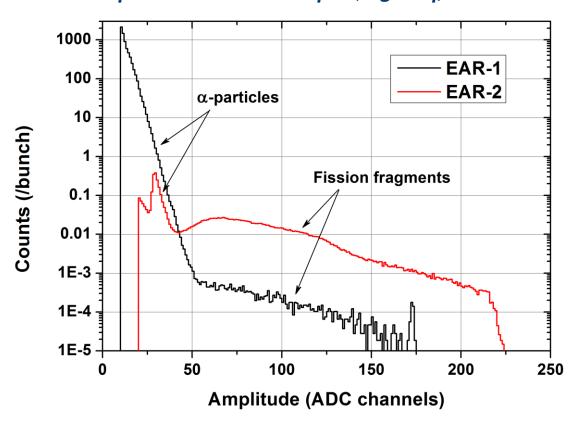

- We request 3x10¹⁸ p.o.t. in EAR-2 with the large collimator
- Continuous data can be obtained almost in the entire energy range
 <100keV, with certain exceptions in the RRR

Beam request

- We request 3x10¹⁸ p.o.t. in EAR-2 with the large collimator
- Statistical uncertainty <2% above 500keV at 100 bpd, <10% above 100keV
 - Very significant improvement in statistics compared to EAR-1

Summary

- The fission cross-section of ²⁴¹Am remains in the NEA High Priority Request List; it is important for waste transmutation and recycling applications
- Existing data do not meet the accuracy requirements for the design of future nuclear systems
- A significant improvement upon the previous n_TOF data can be achieved by exploiting the features of EAR-2
- Accurate data can be provided in a wide energy range
- We request 3x1018 p.o.t. in EAR-2 with the large collimator



EAR-1 & EAR-2 comparison

- Increased flux
- Stronger background suppression

Example: same ²⁴⁰Pu sample (6.5MBq) in both areas

