

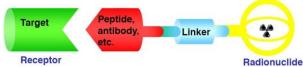


Systematic analysis of the production of Fr, Ra and Ac beams.

CERN-INTC-2017-016; INTC-P-498

Kristof Dockx (Spokesperson) Thierry Stora (Contact person) 08/02/2017

Instituut voor Kern- en Stralingsfysica



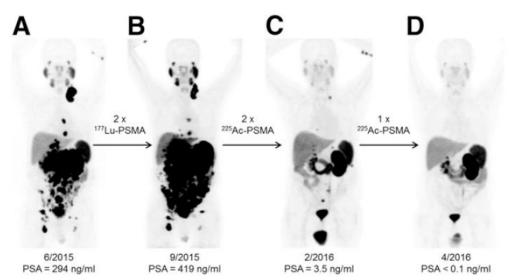
Outline

- Context
- Current ²²⁵Ac production
- Yield and release curve characteristics
- Measurement techniques and approaches
- Conclusion
- Summary beam time request

Context

- Research on medical radioisotopes
- Targeted-Alpha-Therapy (TAT) has big potential
 - Linked to pharmaceutical drug

- High Linear-Energy-Transfer (LET) value
- 70-100 µm pathlength (2-3 cell diameters)
- Double stranded-breaks in DNA

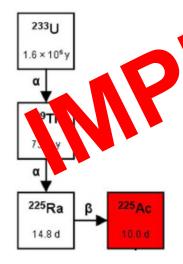

NORMAL DNA GAMMA OR BETA RADIATION

- Very efficient tumor cell killer
- **Applications:** recurrent brain tumor, recurrent ovarian cancer, myelogenous leukemia, metastatic melanoma, metastatic castration-resistant prostate cancer, ...

Context

- Very promising α-emitters: ²²⁵Ac and daughter ²¹³Bi
- Successful early pre-clinical and clinical studies
 - Treatment of bladder cancer by TAT using ²¹³Bi
 - Phase I/II trials on acute myeloid leukemia
 - 2016: total remission of mCRPC-patient

Progressive under conventional β-emitting ¹⁷⁷Lu therapy


Using ²²⁵Ac: Prostate-Specific Antigen decline!!

Ga⁶⁸-PET/CT image of patients

²²⁵Ac production

- Decay from ²³³U
 - $_{\circ}$ 232Th(n,2*β) → 233U
 - Civil and military nuclear applications

Proton irradiation of ²²⁶Ra

- Proton irradiation of ²³²Th
 - \circ 232Th(p,x) → 225Ac
 - $\circ \quad \sigma_{225_{Ac}} < \sigma_{227_{Ac}}$

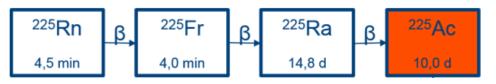
²²⁵Ac production

- Limited availability of pure ²²⁵Ac and ²¹³Bi
 - Big bottleneck for progressing research
- Big need from nuclear medicine:

IIIUKTU.

Nevertheless, the limited availability of ²²⁵Ac is still a key challenge for its clinical translation, and this shortage has to be

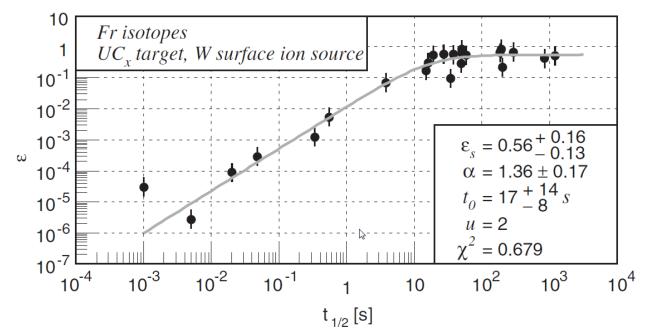
situation, any extra peritoneal location of tumor cens.


A major issue that may hamper wide implementation in the clinic and that needs to be simultaneously addressed is the availability of suitable α-particle emitters at a reasonable cost (43, 89). Otherwise, TAT will remain just a potentially effective treatment, or a very rarely implemented option.

phaemacokinatics have been established too all types of malic

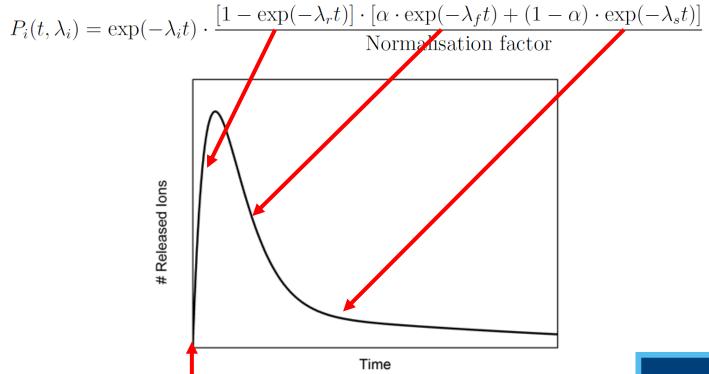
Element selective and mass-pure production

→ ²²⁵Ac, ²²⁵Ra, ²²⁵Fr


Yield and release curve characteristics

Fr	218 - g	1.0 ms	SC	4.3E+03*		UCx		
Fr	219 - g	20 ms	SC	8.9E+03*		UC _X		
Fr	220 - g	27.4 s	sc	6.0E+08*		ThC _X		
Fr	220 - g	27.4 s	SC	3.8E+07*		UC _x		
Fr	221 - g	4.9 m	SC	8.9E+08*		ThC _X		
Fr	221 - g	4.9 m	SC	2.8E+07*		UC _X		
Fr	222 - g	14.2 m	SC	1.2E+09*		ThC_{X}		
Fr	222 - g	14.2 m	SC	1.0E+07*		UC _x		
Fr	223 - g	21.8 m	SC	1.2E+09*		ThC _X		
Fr	224 - g	3.33 m	SC	4.7E+09*		ThC _X		
Fr	224 - g	3.33 m	SC	1.4E+06*		UCX		
Fr	225 - g	4.0 Ra	214 - g	2.46 s	SC	9.2E+06*	<u> </u>	ThC_{X}
Fr	226 - g	49 Ra	214 - g	2.46 s	SC	9.0E+06*		UC _x
Fr	226 - g	49 Ra	220 - g	18 ms	SC	2.4E+05*		ThC _x
Fr	227 - g	2.4 Ra	220 - g	18 ms	SC	1.7E+05*		UC _X
Fr	228 - g	38 Ra	221 - g	28 s	sc	3.5E+09*		ThC _X
Fr	228 - g	38 Ra	221 - g	28 s	sc	3.7E+07*		UC _X
		Ra	222 - g	38.0 s	SC	1.3E+09*		ThC _X
		Ra	222 - g	38.0 s	SC	3.3E+07*		UC _X
		Ra	224 - g	3.66 d	SC	6.0E+08*		UC _X
		Ra	225 - g	14.9 d	SC	2.6E+08*		ThC _X
		Ra	226 - g	1600 y	SC	1.1E+08*		UC _X
		Ra	228 - g	5.75 y	SC	1.8E+07*		UC _X

Yield and release curve characteristics


- Optimization of ²²⁵Ac collection
 - Yield (²²⁵Ac, ²²⁵Ra, ²²⁵Fr)
 - Release curve (²²⁵Ac, ²²⁵Ra, ²²⁵Fr)

 $\varepsilon_{total} = \varepsilon_{diffusion} * \varepsilon_{effusion} * \varepsilon_{transport} * \varepsilon_{ionsource}$

Yield and release curve characteristics

- Optimization of ²²⁵Ac collection
 - Yield (²²⁵Ac, ²²⁵Ra, ²²⁵Fr)
 - Release curve (²²⁵Ac, ²²⁵Ra, ²²⁵Fr)

Measurement techniques and approaches

- Release curve for accurate yield measurements
 - Faster without precision loss
 - Eliminate half life
 - Eliminate secondary production
- Release curve
 - → 205,207,220,221,222,227**F**r
 - → ^{214,220,221,222,227}Ra

- Integrated yield measurement
 - Longer half life scale
 - → 218,219,223-226,228**F**r
 - → ^{219,223-226,228}Ra

Measurement techniques and approaches

α-emitters: Windmill setup (KU Leuven)

On-line

- → 205,207,218-221**F**r
- → ^{214,219-222}Ra

Off-line

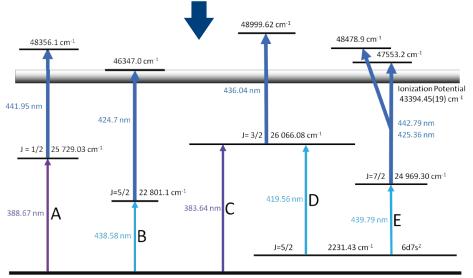
- → ^{223,224,226}Ra (800kBq)
- IC from NPL

β-emitters: Tape station (ISOLDE)

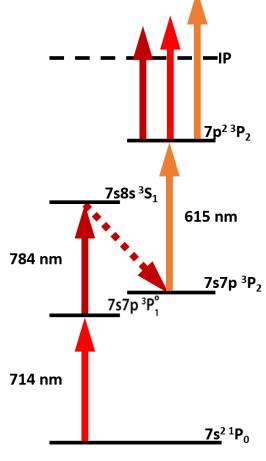
On-line

- → 222-228**F**r
- → ²²⁷Ra
- Off-line collection (Windmill)
 - → ^{225,228}Ra (0,1-1kBq): primary counting methods at **NPL**
 - → ²²⁵Ac

Measurement techniques and approaches


Ion Sources:

Fr: Ta surface ion source


Ra: Resonant laser ionization

Ac: Resonant laser ionization

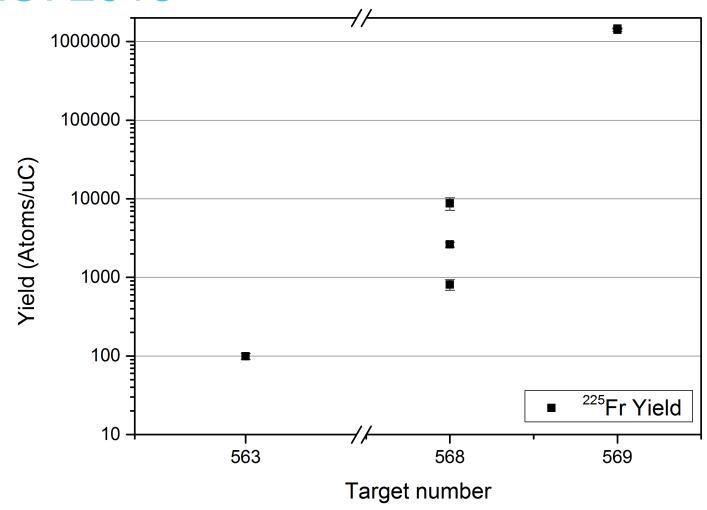
atomic ground state: 0 cm^{-1} , $6d7s^2 J_0 = 3/2$

Conclusion

- ISOL offers solution to lack of pure isotope samples
- 3 routes: 225Ac
 - ²²⁵Ra
 - ²²⁵Fr
- Release curve is needed for fast and accurate yield
- Request 6 shifts: proper and systematic measurements
 - ≥3 on fresh target
 - ≥ 3 on end-of-life target

Summary beam time request

Isotope	Target	Ion Source	# shifts	
205,207,218-228 Fr	UC _x	Та	3+3	
^{214,219-228} Ra	UC _x	Laser		
²²⁵ Ac	UC _x	Laser	RILIS-development	



Back-up slides

LOI 2015

